Submillimetre Spectroscopy of Star Formation

Structure and Kinematics of NGC 2068

Samantha Walker-Smith

University of Cambridge Cavendish Laboratory

<u>Outline</u>

- Introduction to star formation
 - Background and basics
- NGC 2068
 - Observations, overall structure and kinematics
- Clump decomposition
 - Calculating clump masses and bound ratio
- Velocity dispersions
 - Inter- and intra-clump dispersions to differentiate type of turbulence

Basics of Star Formation

- Molecular clouds (H₂, dust) are the birthplaces of stars
- Denser regions collapse under gravity to form centrallycondensed cores
- Infall and accretion of matter from surrounding disk
- Form in clusters which complicates matters

Centrally condensed protostar (red), accreting from disk with matter infalling from the surrounding envelope (blue)

Observation Techniques

- Molecular clouds are cold as they are opaque to visible light.
- Emit at (sub)millimetre wavelengths via rotational transitions
- Absorbed by water vapour – require high dry sites

Role of Turbulence

- Gravoturbulent
 fragmentation
- Forms density enhancements in molecular clouds by a network of interacting shock
- Densest regions at the shock intersections form the prestellar cores
- Provides support against collapse

A simulated giant molecular cloud, showing clear filamentary structure (taken from Smith et. al. (2010))

Questions to be answered

 Length scales over which turbulence dominates, and timescale of turbulent decay

- Decaying vs driven turbulence

- General properties of cores produced in differing turbulent environments at low resolution are insufficiently different to dismiss a particular environment
- Tracing kinematics (instead of spatial and structural properties) of star-forming dense gas may help with differentiation

NGC 2068

- One of the star formation regions in the Orion Molecular Cloud (d~400pc)
- Turbulent, produces fairly high mass stars
- Extensively studied using different molcules (and dust), at different resolutions

Near-IR image of NGC 2068 (reflection nebula), with C¹⁸O molecular emission overlaid

Observations

- Carried out at the JCMT in Hawaii, Sep-Oct 2010.
- 15m single dish
- Both spectral line data (HARP) and continuum/dust emission (SCUBA-2)

James Clerk Maxwell Telescope, Mauna Kea, Hawaii

Molecules observed

- Different molecules have varying abundances, and have different critical densities
 - Therefore trace different structures and scales within the molecular clouds.
- Emission from 3 different molecules observed ¹³CO, C¹⁸O and H¹³CO⁺
- •Dust emission also observed for comparison

Molecule	ΔJ	ν _{trans} / GHz	n _{crit} /cm ⁻³
¹³ CO	3 - 2	330.58	2 × 10 ⁴
C ¹⁸ O	3 - 2	329.33	2 x 10 ⁴
H ¹³ CO ⁺	4 - 3	346.99	3 x 10 ⁷

Velocity Structure/ Kinematics

8

- Gradient across the region from W (9 kms⁻¹) to E (11 kms⁻¹)
 - Indicative of large-scale rotation
- Evidence of multiple components along the line of sight
 - Double-peaked emission at the same velocity for both ¹³CO and C¹⁸O

Outflows

- Ubiquitous in star formation regions
- Seen in spectra as red and blue linewings
- Can be matched to known SCUBA dust cores to pinpoint protostellar cores

Clump Decomposition

- Break down the emission into smaller clumps/cores
- Gaussclumps algorithm
- Comparisons with SCUBA dust cores/protostellar objects can be made

Calculating Clump Masses

- Virial Mass M_{vir}: measure of the internal energy of the clump
- Gas Mass M_{gas}: measure of the potential energy of the clump
- Simplistically, comparing the two should determine if the clumps are bound

$$- M_{vir} ≤ 2M_{gas} : Bound$$

- M_{vir} ≤ M_{gas} : Equipartition

How bound are the clumps?

- Using ${\rm M}_{_{\rm gas}}$ values can give an overestimate
 - C¹⁸O appears more bound despite tracing larger, less dense structures
- Using SCUBA dust masses M_{dust} gives a good estimate for $H^{13}CO^+$

Internal velocity dispersions

- Comparing linewidths for different molecules shows the different regions traced
- C¹⁸O linewidths are on average larger than H¹³CO⁺
- C¹⁸O traces the more turbulent envelopes, H¹³CO⁺ traces the denser, less turbulent core

Inter-clump velocity dispersions σ_{n}

- Comparing inter-clump σ_{i} to bulk gas linewidth σ_{a}
 - Ratio value closer to 1 means the clumps are still coupled to the bulk gas
- σ_{v} also tells us the nature of turbulence present
 - Lower dispersions indicate turbulence has been dissipated in shocks

Conclusions

- H¹³CO⁺ starless clumps have subsonic linewidths: formed at local turbulence minima, consistent with gravoturbulent fragmentation.
- $\sigma_{v} \sim \sigma_{g}$ indicates coupling between star-forming cores and bulk gas.
- Inter-clump velocity dispersions match predictions of decaying turbulence from numerical simulations
- A larger statistical sample is required to conclusively determine type of turbulence.

Thanks for listening!

Questions?