Shaping Planetary Nebulae: Evidence of Magnetic Fields Around Evolved Stars

Marcelo L. Leal-Ferreira (Argelander Institut für Astronomie, Germany)

Dr. Wouter H. T. Vlemmings (Onsala Space Observatory, Sweden)

(Artistic impression on W43A; credit: NRAO/AUI/NSF)

Overview: Stellar Evolution

(Credit: Figure adapted from Kwok 2001; Cosmic Butterflies)

Overview: Planetary Nebulae (Morphology)

(Credit: Catalog of Planetary Nebula by Bruce Balick)

(Credit: Figure adapted from Kwok 2001; Cosmic Butterflies)

Introduction: Shaping an Evolved Star

. Garcia-Segura et al. 1999:

 \rightarrow "A magnetic field in the AGB winds (...) has a pronounced effect in the resultant morphology of the PN, in general resulting in an elliptical shape." \rightarrow "Strong fields in the AGB wind, combined with a significant rotation, generate highly collimated bipolar PN and jets."

(Credit: Garcia-Diaz et al. 2008)

Introduction: Shaping an Evolved Star

. Garcia-Segura et al. 1999:

 \rightarrow "A magnetic field in the AGB winds (...) has a pronounced effect in the resultant morphology of the PN, in general resulting in an elliptical shape." \rightarrow "Strong fields in the AGB wind, combined with a significant rotation, generate highly collimated bipolar PN and jets."

. Other factors that can influence the shaping of an evolved star:

 \rightarrow A companion to the star, and its tidal forces (heavy planet or a binary star system)

- \rightarrow Disk interaction
- \rightarrow Combination of any of the above

(Credit: Garcia-Segura et al. 1999)

Observations

. Five evolved stars: OH231.8 (pPN), IK Tau, IRC60370, AP Lyn (Miras), RT Vir (semi-regular variable)

. VLBA, in Feb/Mar 2009

. H_2O masers at 22.235 GHz: Rotational transition $6_{1,6} - 5_{2,3}$

. Low resolution: 128 channels of 0.104 km/s width, full polarization mode

. High resolution: 512 channels of 0.026 km/s width, dual polarization mode

(Credit: NRAO/AUI/NSF)

Observations: Masers around Evolved Stars

. SiO masers:

 \rightarrow At the extended atmosphere of the star; between the photosphere and the region where the dust is created.

 \rightarrow Between ~2-3 AU (if R_{star} = 1 AU)

. OH masers:

 \rightarrow At hundreds of AU from the star

. H₂O masers:

 \rightarrow In between these 2 regions

(Credit: Vlemmings; private communication)

(blue overlav=F656l

(Leal-Ferreira et al. 2012)

-20

40

60

20

Right Ascension offset (mas)

0

2.E

-40

2.C

IRAS 07399-1435 [OH231.8+04.2, Rotten Egg, GLMP191] (4/2008)07 42 16.83 -14 42 52.1 (2000), FOV=64.0", R:G:B = F814W:comb:F555W WFPC2/WF3, credit PI:BUJARRABAL GO8326 NASA/ESA/STScl, Hubble Archives

PN G231.836 +04.220 ely Post-AGB Object

(Leal-Ferreira et al. 2012)

. Detection of linear polarization in 3 features, all of them in the South Region

. EVPA scattering:

 \rightarrow (i) Turbulence

 \rightarrow (ii) Tangent points of a toroidal magnetic field

 \rightarrow (iii) Internal Faraday Rotation (less likely)

Reg	Label	I (Jy/beam)	∫ I (Jy)	V _{lsr} (km/s)	POLI (%)	POLA (°)
SReg	S.05*	2.5472(+0)	3.5906(+0)	42.5	0.634 ± 0.003	-65.48 ± 5.73
SReg	S.06	1.3503(+0)	1.4570(+0)	41.9	1.148 ± 0.003	$+58.00 \pm 5.8$
SReg	S.07	5.5267(+0)	6.7698(+0)	41.6	0.281 ± 0.002	-31.61 ± 3.72

. When circular polarization is present, the Stokes V spectrum should have a S-Shape

. Detection of circular polarization in 2 features, one in the South Region, one in the North Region

$$\rightarrow B_{\parallel} \text{ (North Region): 73 \pm 11 mG}$$

$$\rightarrow B_{\parallel} \text{ (South Region): -47 \pm 34 mG}$$

. Adopting
$$B \propto r^{-1}$$
: $B_{star} = \sim 2.5 G$

. Detection of <u>85 maser features</u>, composed by <u>525 maser spots</u>

Π

-10

-15

-5

Right Ascension offset (mas)

0

5

(Leal-Ferreira et al. 2012b, in prep.)

RT Vir, IRC 60370, AP Lyn: Summary

<u>. RT Vir:</u>

- \rightarrow 91 maser features (from 671 maser spots)
- \rightarrow Circular polarization on 2 (+1) features
- \rightarrow 143 < $|B_{\parallel}$ (RT Vir) [mG] < 188

 \rightarrow If B \propto r⁻¹: 0.3 < B_{star} [G] < 2.9

 \rightarrow Linear polarization on 9 features

<u>. IRC 60370</u>

- \rightarrow 62 maser features (from 634 maser spots)
- \rightarrow Circular polarization on 5 features
- \rightarrow 47 < |B_{||} (IRC 60370)| [mG] < 331
- $\rightarrow \text{If } B \propto r^{-1}: 0.25 < B_{\text{star}}[G] < 22$
- \rightarrow Linear polarization on 9 features

<u>. AP Lyn</u>

 \rightarrow No maser detection

(Leal-Ferreira et al. 2012b, in prep.)

Discussion: Magnetic Field

. The magnetic field dependence is yet not well defined

 \rightarrow But a $B \propto r^{-2}$ behavior looks more likely for IKTau.

 \rightarrow With B \propto r⁻²:

 $6.6 < B_{iktau}[G] < 54.5$

. The observed magnetic field energy is similar or dominates the kinematic energy \rightarrow nKT (H₂O) [dyne/cm²] ~ 10^{-5.2} $\rightarrow \rho V_{exp}^{2}$ (H₂O) [dyne/cm²] ~ 10^{-4.1} $\rightarrow 10^{-4.1} < B^{2}/8\pi$ (H₂O) [dyne/cm²] < 10^{-2.4}

Conclusions

. We detected water masers in 4 of 5 sources

. A kinematic analysis in Rotten Egg Nebula shown that the masers are moving away with $\rightarrow v = 21 \text{ km/s}$

- . Linear polarization was found in 3 of these 4 sources
- . Circular polarization was found in all 4 sources

. We retrieved the magnetic field strength to be \rightarrow 47 < B [mG] < 331 (± uncertainties) in the H₂O maser region

. We extrapolated the magnetic field strength to the surface of the stars, assuming B \propto r⁻¹: $\rightarrow 0.25 < B [G] < 22$

. The dependence of B is not yet determined (IK Tau: B \propto r⁻² seems more likely). If that is so: $\rightarrow 6.6 < B_{iktau}[G] < 54.5$

. The observed magnetic energy can dominates the thermal/kinematic energy

Shaping Planetary Nebulae: Evidence of Magnetic Fields Around Evolved Stars

> Marcelo L. Leal-Ferreira (Argelander Institut für Astronomie, Germany) Dr. Wouter H. T. Vlemmings (Onsala Space Observatory, Sweden)

> > DAAD

Argelander-Institut

stronomie

für

universität<mark>bo</mark>

Background: Artistic impression on W43A Credit: NRAO/AUI/NSF

. Detection of <u>91 maser features</u>, composed by <u>671 maser spots</u>

22.23 GHz RTVir H,0

100

RA₀ 13 02 37.9816 Dec₀ 05 11 08.378

100

50

20

15

10

 $V_{\rm lsr}~({\rm km/s})$

(Leal-Ferreira et al. 2012b, in prep.)

. Detection of <u>91 maser features</u>, composed by <u>671 maser spots</u>

. Circular polarization on 3 features $\rightarrow B_{\parallel} (RT.70) = -143 \pm 12 \text{ mG}$ $\rightarrow B_{\parallel} (RT.75) = -188 \pm 6 \text{ mG}$ $\rightarrow B_{\parallel} (RT.90)^* = -84 \text{ mG } \& +63 \text{ mG}$

*Not unique solution

. If $B \propto r^{-1}$: $\rightarrow 0.3 < B_{star} [G] < 2.9$

. Linear polarization on 9 features

. Detection of <u>62 maser features</u>, composed by <u>634 maser spots</u>

(Leal-Ferreira et al. 2012b, in prep.)

