Radio Properties of nearby Groups of Galaxies

20-09-2012 Konstantinos Kolokythas

YERAC, PUSHCHINO 2012

Outline

- Introduction on Active Galactic Nuclei (what are they?)
- Heating by Active Galactic Nuclei (AGN): Feedback (what is it?)
- Environment of research: Groups of Galaxies (why?)
- > The CLoGS project (Complete Local-Volume Groups Sample)
- Results on NGC4261 and NGC5982 so far
- Conclusions

Active Galactic Nuclei (AGN)

- Extragalactic radio sources: Bipolar outflows of magnetic field and relativistic particles ejected from an AGN
- The central engine is the associated Quasar or AGN
- AGN is surrounded by an accretion disk and fuelled by the accretion of gas onto a SMBH
- Synchrotron radiation due to transportation of energy via an aligned beam in two oppositely directed beams (Jets)

Radiation from an active galaxy's central black hole (Credit: ESA/NASA/AVO/Paolo Padovani)

UNIVERSITY^{OF} BIRMINGHAM

Heating by AGN: Feedback

Heating by AGN: Feedback

Heating by AGN?

- Conversion of radio AGN outflow energy into heating of the circumgalactic medium is adequate to provide the heating needed
- AGN feedback is a loop process where energy in some form is produced from the central regions of the galaxy, which can heat up the inflowing gas, preventing it from cooling

UNIVERSITY^{OF} BIRMINGHAM

Galaxy Groups

- Groups of Galaxies contain >50% of the galaxies in the local Universe plus a similar fraction of the total baryonic mass
- Groups bring galaxies into close proximity at low relative velocities, promoting tidal interactions and mergers
- Therefore feedback in groups has the greatest impact on galaxy formation and galaxy evolution
- > <u>Obstacle</u>: Lack of a statistically complete radio/X-ray sample of nearby groups
- CLoGS project sample consists of 53 optical & X-ray selected candidate groups in the local Universe (<80 Mpc)

CLoGS project (Complete Local-Volume Group Sample)

- CLoGS project is a survey of galaxy groups observed in the
 - X-ray hot gas
 - Optical galaxies
 - Radio AGN activity
- 235 and 610 MHz using GMRT
- GMRT sensitivity (for 2-3hr obs.):
 rms ≈ 50-100µJy/b @610MHz,
 rms ≈ 300-500µJy/b @235MHz

Resolution: 5" @610 MHz to 12" @235 MHz (HPBW)

UNIVERSITY^{OF} BIRMINGHAM

Giant Metrewave Radio Telescope (GMRT)

- Placed about 80 km north of Pune, in India
- > 30 totally steerable huge parabolic antennas of 45m diameter each
- Maximum distance reaching up to 25 km at a range of frequencies from 50 MHz to 1450 MHz
- The dishes have been build of wire mesh in a parabolic configuration
- Due to design each antenna has minor wind loading - low total weight, hence GMRT low cost of construction.

Main science goals of CLoGS project

- Characterization of the AGN population in groups
- Properties of group central AGN (eg. power output, study of spectral ageing of radio synchrotron emission)
- Mechanisms of feedback heating (Are shocks / cavities dominant?)

CLoGS collaboration members

Principal Investigator Dr. Ewan O'Sullivan

Prof. Trevor Ponman Dr. Somak Raychaudhury Dr. Alastair Sanderson Konstantinos Kolokythas Dr. Jan Vrtilek Dr. Laurence P. David Dr. William Forman Dr. Christine Jones Dr. Chris Haines Dr. Simona Giacintucci Dr. Nazirah Jetha Dr. Myriam Gitti Prof. Stephen S. Murray

Dr. Nimisha G. Kantharia

University of Birmingham Harvard-Smithsonian Center for Astrophysics Harvard-Smithsonian Center for Astrophysic Harvard-Smithsonian Center for Astrophysics Harvard-Smithsonian Center for Astrophysics University of Arizona University of Maryland University of Alabama, Huntsville INAF - Astronomical Observatory of Bologna Harvard-Smithsonian Center for Astrophys Johns-Hopkins University National Centre for Radio Astrophysics University of Victoria

UNIVERSITYOF

BIRMINGHAM

Harvard-Smithsonian Center for Astrophysic

More info: http://www.sr.bham.ac.uk/~ejos/CLoGS.html

LGG 278/NGC 4261

- LGG 278/NGC 4261 is a group on the outskirts of the Virgo cluster
- Its dominant elliptical, NGC 4261, is a prolate, slowly rotating E2 galaxy (z~ 0.00745) whose primary axis of rotation is close to its major-axis
- Bright FR I radio source 3C 270 whose twin jets lie close to the plane of sky
- Radio analysis performed at 244 MHz, 610 MHz, 1.4 GHz and 4.8 GHz (Kolokythas K., O' Sullivan E., Raychaudhury S., Chandra I. paper in prep.)

Observation date	Frequency (MHz)	Bandwidth (MHz)	Integration time (min)	HPBW, PA (full array, $"\times", \circ$)	$^{ m rms}$ mJy b^{-1}	
2009 Feb 14	607	16	270	7.32×4.77, 76.62	1	
2009 Feb 14	244	32	270	15.3×11, 67.17	1.3	
Components	S ₂₄₄ MHz (Jy)	S ₆₀₇ MHz (Jy)	z S _{1.4} Gl (Jy)	Hz S _{4.8} GHz (Jy)	α^{244MHz}_{607MHz}	
Total	39.70 ± 3.20	26.30 ± 1.30	0 18.30±0	$\begin{array}{cccc} 0.90 & 7.30 \pm 0.40 \\ 0.3 & 0.60 \pm 0.03 \\ 50 & 3.80 \pm 0.20 \\ 40 & 2.90 \pm 0.15 \end{array}$	0.45	
Core	0.60 ± 0.05	0.30 ± 0.02	2 0.40±0.		0.76	
Right jet	21.00 ± 1.70	13.30 ± 0.70	0 9.60±0.		0.50	
Left jet .	18.32 ± 1.47	12.30 ± 0.60	0 8.60±0.		0.44	

NGC 4261 (244MHz GMRT)

- > On the left: Radio image of NGC 4261 at 244 MHz of rms ~1.3 mJy
- > Contour levels start at 4σ and rise by factor of 2
- > On the right: Optical image overlaid by 244MHz GMRT

NGC 4261 (610 MHz GMRT)

Radio image of NGC 4261 at 610 MHz of rms ~1 mJy

NGC 4261 (1.4 GHz VLA)

Р	Project Array		Fre (quency GHz)	Integration time (min)	HPBW (Typical full array, "	rms (×'') mJy b^{-1}	
A A AH AH	DBCO DBCO	N 1 N 2	B&C B&C&D		1.4 4.8	61 126	$\approx 19.01 \times 11.1 \\ \approx 18.6 \times 11.11$	7 0.8 1 2
AH03	303 A	1989	Mar 15	в	4.8	100	10	$\approx 1.5 \times 1.5$
AH03	303 B	1989	Jul 28	BnC	4.8	100	10	$\approx 2.5 \times 2.5$
APO	0077	1984	Apr 22	С	4.8	100	25	$\approx 4.0 \times 4.0$
AL06	593 B	2007	Mar 18	D	4.8	50	81	$\approx 14 \times 14$

NGC 4261, 1.4 GHz VLA, rms ~0.8mJy, Contour levels 40-640

NGC 4261 (4.8 GHz VLA)

- > On the left: Radio image of NGC 4261 at 4.8 GHz (VLA) of rms ~2 mJy
- > Contour levels start at 5σ and rise by factor of 2
- On the right: Optical image overlaid by 4.8 GHz VLA radio contours starting at 5 o and rise by factor of 2

First results: NGC 4261 SPIX

- XMM residual map shows cavities corresponding to the lobes, & the N-S bar of Xray emission (O'Sullivan et al 2011)
- Expansion of the lobes is probably responsible for the general north-south extension of the X-ray emission within the stellar body of NGC 4261
- > Temperature map shows that the central gas is coolest \rightarrow jets have pushed aside gas rather than heating it (O'Sullivan et al 2011)
- Steep spectral indices between the two lobes correlate with a bar-like X-ray structure and depolarization possibly indicating gas mixing

Synchrotron Spectral ageing

High-frequency cutoff: Whatever the highest energies of the e⁻ in the initial synchrotron population if we return to a blob of synchrotron emitting plasma some time t after it was accelerated, only e⁻ with lifetimes longer than t will remain

First results: NGC 4261 SPIX

- XMM residual map shows cavities corresponding to the lobes, & the N-S bar of Xray emission (O'Sullivan et al 2011)
- Expansion of the lobes is probably responsible for the general north-south extension of the X-ray emission within the stellar body of NGC 4261
- > Temperature map shows that the central gas is coolest \rightarrow jets have pushed aside gas rather than heating it (O'Sullivan et al 2011)
- Steep spectral indices between the two lobes correlate with a bar-like X-ray structure and depolarization possibly indicating gas mixing

Results: NGC 5982 (610 MHz)

- NGC 5982: Face on elliptical galaxy (E3) placed in the NGC 5985 group, suggested to be a product of a minor merger (z~ 0.010064)
- Along with an edge-on barred spiral galaxy (NGC 5981) & a face-on barred spiral galaxy (NGC 5985) consist *Draco Trio*
- GMRT 610 MHz (~8.0" x 6.5") reveal AGN in all, as well as star formation emission from the disk galaxies

Results: NGC 5982 (Draco Trio)

- Radio fluxes:
- (left) NGC 5985 ~85 mJys
- (center) NGC 5981 ~2.5 mJys
- (right) NGC 5985 ~9 mJys
- ~12ksec XMM pointing detects
 ~0.5 keV group halo out to ~85 kpc
- Central AGN radio emission probably old & ceased (235 MHz analysis will show more)
- Central point sources co-existing with diffuse emission from the disks (AGN+SF). The AGN have not extinguished the SF

Conclusions (Take home points)

- The group environment is important to our understanding of galaxy evolution & role of AGN in governing star formation & IGM cooling
- Spectral index maps are used to investigate the interaction between radio source and surrounding environment (X-ray halo)

 <u>X-ray provides</u>
 Location/properties of most baryons and an estimation of energy in cavities, shocks etc <u>Radio provides</u>
 Timescales via synchrotron ageing, constraints on source geometry and direct view of AGN/gas interactions

> UNIVERSITY^{OF} BIRMINGHAM

The end!

UNIVERSITY^{OF} BIRMINGHAM

CLoGS project (Complete Local-Volume Group Sample)

□ CLoGS groups selected within this sample have:

- 4 or more member galaxies, excluding small associations which may lack a group-scale dark halo
- I or more early-type member galaxy
- > optical luminosity L_B of at least $3x10^{10}L_{sol}$ for the brightest early-type galaxy, and
- > Declination >-30°, to ensure visibility from the <u>GMRT</u> and <u>VLA</u>.

Heating by AGN: Feedback

- Evidence of AGN heating: Detection of X-ray structures (cavities, shocks etc) correlated with radio jets and lobes in numerous cool-core groups and clusters
- Combination of multi-frequency radio data and high-quality X-ray observations is required to provide insight into the processes involved
- AGN feedback is a loop process where energy in some form is produced from the central regions of the galaxy, which can heat up the inflowing gas
- If in sufficient quantity, provides enough energy to suppress star formation
- A basic requirement to this is that this heating occurs in a time comparable to the relevant cooling times
 UNIVERSITYOF
 BIRMINGHAM

Radio Frequency Interference (RFI)

Data Analysis (AIPS)

- Data analysis is done with Astronomical Imaging Processing System (AIPS)
- The observations at GMRT are done with a periodical switch between the source and the calibrators
- Phase difference between successive visibilities is used as task of goodness of our data

Sourc	ce summary				1011				FLAG PITXEL	EXIT			
Velo	ity type =	'TOPOCENT'	Definitio	n = 'RADIO			CHTCOLOR SHIER MAR FISC CHTCOLOR SHIER MAR FISC TVTICBLE CHTCR FMC FISH TVICBLE CHTCR FMC FISH TVICBLE CHTCR FMC FISH	HIGE DISPLAY HIS HIGH	FLAG DER REAL				
ID	Source	Qual	Calcode RA(2000.0)	Dec(2060.0)	No. vis	DO BEDSE 7 CHTER CHOOTH T	ENC DEOPLAY MIP V DEFE	CLIP BY SET HE				
1	30147	: 6609	05:	42:36.1298	49:51:07.164	52200	LEST FLAGS ENTER CHANNEL LHOD FLAGS ENTER IF	DISPLAY PHUSE DIFF	CLIP BY FORM				
Z	1311-222	: 6609	13;	11:39.3343	-22:16:41.725	69696	DET READER SWITCH SOURCE	PLAC OFF MINDS + 1000	LOAD HENT GRAD				
з	ES0507-25	: 6609	12:	51:31.8042	-26:27:07.026	269798	Swittes all-IF	PLAS 1.0+2					
4	NGC5153	: 6609	13:	27:54.3944	-29:37:05.024	271440							
5	3C286	: 6609	13:	31:08.2443	30:30:32.530	16095				In the	120		
6	1449+632	: 6609	14;	49:21.7252	63:16:14.440	46986							
7	NGC5982	: 6609	15:	38:39.8050	59:21:20.953	384540					A PART	1.1.3	
8	3C48	: 6609	91:	37:41.3139	33:09:35.174	42630				A Ch	(* kp 1		
									-E8				
ID	Source	Freq	(GHz) Veloci	ty(Kn/s) Re	st freq (GHz)				- 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				
1	3C147	θ.	.6290	0.0000	6.9609							Con Carlo	
2	1311-222	Θ.	.6290	0.0009	6.8609								
з	E50507-25	Ð.	.6290	0.0009	6.9609				4				
4	NGC5153	θ.	.6290	0.0000	0.0000				Ser in			1. 16. 1	
5	3C286	θ.	.6290	-62.0628	6.9609								
6	1449+632	Θ.	.6290	0.0000	6.8609							一部	
7	NGC5982	Ð	.6290	0.0000	0.0000				E an				
8	3C48	θ.	.6290	-31.0330	6.0000								

Synchrotron Spectral ageing

- Low-frequency cutoff : As a photon propagates through the plasma on its way out of the source, there is a chance that it will scatter off one of synchrotron e⁻. This is synchrotron self- absorption
- If occurs many times before the photon can get out of the source, we 'see' emission from a thin layer near the surface of the source.

