Anomalous Emission Zooming In on Spinning Dust in Perseus

Jackie Villadsen Caltech YERAC 2012

with the invaluable collaboration of: Kieran Cleary, Matt Sieth, Chris Tibbs, Karto Keating, Matthew Stevenson, Anthony Readhead, Anna Scaife, Tim Pearson, Laura Perez, Yvette Perrott, Keith Grainge

Overview

- What is "anomalous emission"?
- Observations of Perseus at 30 GHz
- Comparison to thermal dust emission
- Measuring spectral index

What is anomalous emission?

- Anomalous microwave emission (AME): excess of emission at 10s of GHz unaccounted for by known emission mechanisms
- Discovery:
 - Power excess in CMB experiments: COBE 1996, Saskatoon 1997
 - I5 GHz spatial correlation with infrared: RING5M 1996

Theory

Electric dipole emission from small, rotating grains

(Draine & Lazarian 1998)

Why study AME

- Intrinsic interest poorly understood emission mechanism
- Foreground to CMB with poorly constrained polarization
- Potential insight into dust properties

Unanswered Questions

- Is spinning dust the only emission mechanism?
- Can we predict AME levels using other environmental properties?
- What is the spatial power spectrum?
- Can we constrain physical properties of dust from AME measurements?

Perseus molecular cloud

What's so anomalous?

What's so anomalous?

Correlation with infrared (better than free-free)

What's so anomalous?

Excess in spectrum

Spitzer: Perseus

24 micron

Combined Array for Millimeter-wave Astronomy (CARMA) 8-Element Array			
	Frequency	31 GHz	
	Bandwidth	8 GHz (16 x 500 MHz)	
	Antennas	6 x 3.5-m	
	Shortest baseline	4 m / 0.4 kλ / 9'	
	Longest baseline	I2 m / I.2 kλ / 3'	
	Latitude	37 °	

CARMA: Perseus

CARMA: Perseus

31 GHz - Resolution: 2.5'

Spitzer: Perseus

CARMA: Perseus

Comparison with IR

Arcminute Microkelvin Imager (AMI)

Combined Array for Millimeter-wave Astronomy (CARMA)

AMI observations:
Tibbs et al, in prep

	AMI Small Array	CARMA 8-Element Array
Frequency	I5 GHz	31 GHz
Bandwidth	6 GHz (8 x 750 MHz)	8 GHz (16 x 500 MHz)
Antennas	10 x 3.7-m	6 x 3.5-m
Shortest baseline	5 m / .25 kλ / I4'	4 m / 0.4 kλ / 9'
Longest baseline	20 m / I kλ / 3.5'	I2 m / I.2 kλ / 3'
Latitude	52°	37 °

Perseus: 15 and 30 GHz

Future Work

- Spatially resolve spectral index variations
- Constrain free-free & thermal dust ATA, Herschel
- Combine data from multiple interferometers to probe larger range of spatial scales
- CARMA upgrade I cm receivers on large dishes, long baselines - 0.5' resolution - pair with AMI Large Array

Supplementary Slides

VSA: Perseus

33 GHz - Resolution: 7'

What's so anomalous? (about the microwave emission)

 Correlation with infrared (better than free-free)

• Excess in spectrum

Comparison with IR

30 GHz Filtered 24 μm

How to Compare

- Compare in image plane:
 - As is
 - After filtering uv coverage to match
- Compare in uv plane:
 - Simultaneous component fitting
 - Compare each to simulated visibilities

Free-free & Thermal Dust

- Free-free: planned ATA observations
- Thermal dust: Herschel 500 micron

Simulated Visibilities

- uvdist vs. amp for simulated & real data from each interferometer - use 24 microns
- use this to derive overall spectral index