

Spectral Evolution in Blazars -Observation and Theory-

Christian M. Fromm¹ 20.09.2012

Collaborators: E. Ros^{2,1}, M. Perucho², T. Savolainen¹, P. Mimica², A. P. Lobanov¹, J. A. Zensus¹

¹ MPIfR Bonn
² University of Valencia

Outline

- Motivation
- Observations
- RHD Simulations
- Summary

Active Galactic Nuclei

Spectral Energy Distribution (SED)

Standard Model: Single zone model within cylindrical or conical jet

Ref: Ghisellini et al. 1998

Spectral Energy Distribution (SED)

Standard Model: Single zone model within cylindrical or conical jet

Ref: Ghisellini et al. 1998

Synchrotron Radiation

relativistic electrons: $N(\gamma) = K\gamma^{-s} \quad \gamma_{\min} < \gamma < \gamma_{\max}$ magnetic field: *B* Emission zone: *R*

Single Dish

CTA 102 (2230+114) z=1.037

Ref: Fromm et al. 2011

Shock-in-Jet Model

Ref: Marscher & Gear (1985), Tuerler et al. (2000)

Single Dish

observed light curve

Ref: Fromm et al. 2011

Single Dish

Ref: Fromm et al. 2011

Modified Shock-in-Jet Model

Modified Shock-in-Jet Model

Ref: Fromm et al. 2011

Very Long Base Line (VLBI)

CTA 102 (2230+114) z=1.037

Ref: Fromm et al. 2012

VLBI Modeling

2D Gaussian Modeling: Position (x,y), Flux Density, (S) and Size (FWHM)

identify and trace features with time and frequency

Ref: Fromm et al. 2012

VLBI Modeling

steady state

speed of the components viewing angle size of the jet/emission region magnetic field and its orientation particle density and its evolution

$\beta_{\text{app}} = 4 - 16 \text{ c}$ $\delta_{\text{max}} = 8 - 21$ $\vartheta_{\text{max}} = 2.6^{\circ} - 3.6^{\circ}$ R = 0.4 - 40 pc $B_{\text{core}} = 100 \text{ mG}$ $N_{\text{core}} = 40 \text{ cm}^{-3}$

during flares

variation of the magnetic field variation of the particle density

Ref: Fromm et al in prep.

$$B_{\rm core} = 100 \,\mathrm{mG}$$
$$N_{\rm core} = 100 \,\mathrm{cm}^{-3}$$

Creation of standing features

Creation of standing features

ation

Using RATPENAT (Perucho et al. 2008) + LUXS(Fromm et al. 2012)

A2

 p_{a} $p_{0} > p_{a}$ ϕ r_{0}, p_{0} r_{0} r_{0}, p_{0} r_{0} r_{0} r_{0}

Assumptions: radiative & adiabatic losses

$$\begin{array}{l} d_k = 3 \quad \text{over-pressure of jet} \\ \rho_b = 1.65 \cdot 10^{-27} \ \text{g/cm^3} \\ M_a = 3 \quad \text{Mach number} \\ \widehat{\gamma} = \frac{1}{4} \sqrt{9} \int_{a}^{b} \sqrt{\frac{1}{dr}} diabatic index e-p+ \end{array}$$

C1 A1

C2

Log Pressure

standing shocks

16

eRHD Simulations (Emission)

17

Summary

- intrinsic parameters from observations
- internal structure of the jet is important
- energy losses have to be taken into account

Summary

- intrinsic parameters from observations
- internal structure of the jet is important
- energy losses have to be taken into account

to be done

- application to other blazars
- modify the radiative transfer code (2D ray tracing)
- parameter space study for different shocks

Summary

- intrinsic parameters from observations
- internal structure of the jet is important
- energy losses have to be taken into account

to be done

- application to other blazars
- modify the radiative transfer code (2D ray tracing)
- parameter space study for different shocks

Questions/Suggestions