

Характеристики приёмной системы радиометра водяного пара на длительных интервалах времени

В. Ю. Быков, Г. Н. Ильин ИПА РАН

Всероссийская радиоастрономическая конференция 22-26 сентября 2014 г. Пущино

1

ИПА РАН

Основные параметры приёмной системы РВП

	N⁰	Название параметра	РВП-1	РВП-3	РВП-4
	1	Диапазон рабочих частот, ГГц Канал А Канал Б	20,7±0,25 31,4±0,25	20,7±0,25 31,4±0,5	20,7±0,25 31,4±0,5
	2	Шумовая температура системы отнесённая ко входу, К, Канал А Канал Б	150 280	139 250	140 260
	3	Коэффициент передачи СВЧ тракта до детектора не менее, дБ Канал А Канал Б	65 65	65 65	65 65
BPK-2014					
22-26 сентября	2014 г				

3

Калибровка РВП

Метод	Τип ΡΒΠ	Возможность автоматизации	Погодные ограничения	Длительность , часов	Примечания
«разрезѕ» атмосферы	Со сканирование м по УМ	автоматическая	Сухая, ясная погода	0.3	
НШИ	Все типы	ручная	Отсутствие осадков	2	Необходим жидкий Азот
ГНСС	Все типы	Полуавтоматиче ская	Отсутствие осадков		Калибруется по задержке
РСДБ	Все типы	Полуавтоматиче ская	Отсутствие осадков		Калибруется по задержке
Сличение с «эталонным» РВП	Все типы	ручная	Отсутствие осадков		

BPK-2014

Постановка задачи

Необходимо увеличивать интервал между калибровками.

Цель исследования:

оценить стабильность характеристик РВП, как измерительного устройства,

во времени и определить максимальный межповерочный интервал.

Исследования проходили на следующих объектах:

РВП1 – запущен в 2011 г., установлен в РАО «Светлое»

- РВПЗ запущен в мае 2014 г., установлен в РАО «Светлое»
- РВП4 проходит лабораторные испытания

BPK-2014

Исходные данные

Согласно ТЗ ошибка определения задержки, не хуже З мм (СКО).

ΔL(mm) ≈ 4.5* ΔTя(K),

следовательно ошибка измерения яркостной температуры атмосферы должна быть не хуже 0.67 К.

Диапазон температур (-40 ÷ +40) °C

Источники нестабильности

- Входной СВЧ тракт: рупорно-линзовая антенна, Х-переключатели.
- МШУ
- Аттенюатор
- Детектор
- Низкочастотная схема измерения сигнала детектора

По видам воздействия:

- мультипликативные
- аддитивные

BPK-2014

Реальные характеристики нестабильности РВП1

Обсерватория «Светлое», (01-30) апреля 2014г

Температура в контейнере: (+37,60 ± 0,15) °С

Температура СВЧ тракта: (+30,0 ± 0,01) °С

Реальные характеристики нестабильности сигнала опорных ГШ

РВП3 Обсерватория «Светлое», 03 июня – 03 июля 2014г

Температура в контейнере: (+30,0 ± 0,05) °С

Температура СВЧ тракта: (+30,0 ± 0,01) °С

ИПА РАН

Канал А: СКО=0.2% или 0.3 К /мес Канал Б: СКО=0.4% или 1.1 К /мес

BPK-2014

Частотные спектры сигнала опорного ГШ канала А

1,0E-06 1,0E-05 1,0E-04 1,0E-03 1,0E-02 1,0E-01 1,0E+00

BPK-2014

Частотные спектры сигнала опорного ГШ канала Б

1,0E-06 1,0E-05 1,0E-04 1,0E-03 1,0E-02 1,0E-01 1,0E+00

BPK-2014

ИПА РАН

Учет флуктуаций коэффициента передачи

Обсерватория «Светлое», 03 июня – 03 июля 2014г

Температура в контейнере: (+30,0 ± 0,05) °С

Температура СВЧ тракта: (+30,0 ± 0,01) °С

Долгосрочная стабильность температуры опорных ГШ РВП1

Температура ГШ1 канала А и Б РВП1

ТгшА=(40.017±0.007) °С

ТгшБ=(40.019±0.016) °С

BPK-2014

ИПА РАН

Исследование стабильности измерителей температуры

BPK-2014

Испытания РВП4 в диапазоне температур (ВНИИФТРИ)

Зависимость температуры ГШ2 РВП4 от температуры окружающей среды

BPK-2014

Зависимость калибровочного сигнала от температуры окружающей среды РВП1

BPK-2014

ИПА РАН

Климатические испытания РВП4 (ВНИИФТРИ)

Ошибка измерения яркостной температуры в канале А РВП-4

BPK-2014

Калибровочные коэффициенты рассчитаны для каждой температуры по критерию ошибки измерения антенной температуры не более 0.01 К

BPK-2014

ИПА РАН

Функциональная схема измерения сигнала детектора Источник питания №2 Источник Изолятор питания В шины $\pm 5 B$ данных Схема управления Источник питанием питания Б 3.3 B

BPK-2014

Временная зависимость сигнала смещения

BPK-2014

ΔT=(0.028±0.004) K

Заключение

- Мультипликативная составляющая флуктуации коэффициента передачи эффективно фильтруется калибровкой радиометра по встроенным ГШ.
- Аддитивные компоненты помехи остаются постоянными в течении, по крайней мере, 3-4 месяцев и не имеют выраженной зависимости от температуры окружающей среды.
- 1. Оптимистичный прогноз: калибровку РВП можно проводить однократно при изготовлении, или после ремонта узлов СВЧ тракта.

BPK-2014

Спасибо за внимание !

BPK-2014