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1 Introduction

Tidal interaction of galaxies is one of main factors governing their dynamical evo-
lution. It was studied by a lot of authors after pioneering works by P.O. Lindblad
(1960), J. Pfleiderer (1962), N. Tashpulatov (1969, 1970), T. Eneev et al. (1974). A
deep analysis of the problem was fulfilled by A. & J. Toomre (1972).

The most of current studies of galaxy interaction and merging are based on N-
body simulations (see e. g. a paper by Tutukov et al., 2007 and a book by Orlov
& Rubinov, 2008). Many expressing scenarios of galaxy evolution has appeared in
course of discussing of obtained results. For instance, Byrd & Valtonen (1990) put
forward a hypothesis that SO galaxies result from spirals after destroying their spiral
structure under the external gravitation of passing by galaxies.

But we think that main features of galaxy interaction can be revealed in frames
of the restricted three-body problem. Such model was used by Sotmkova (1980),
Belov (1990) and recently by Tutukov & Fedorova (2006).

In this work we study an evolution of an ensemble of test points under action of
two gravitating point masses for various initial conditions. We shall restrict ourselves
with the plane problem.

2 The Equations of Motion

Let m4, mp be masses of gravitating points A, B, Xa, X5 be coordinates of the
point B relatively the point A, and X, Y relative coordinates of the test point. The
equations of motion will be as follows:
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Here
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G is the gravitational constant, and Xp = Xp(t) and Yp = Yj(t) are considered as
known functions.




Now it is necessary to transform to transform the equations into a dimensionless
form. We shall choose m4 as the mass unit, the least distance between points A
and B, rg, as the distance unit,

as the time unit.
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with 72 = £2+y2. These equations were integrated numerically by the Runge-Kutta
method of the fourth order for 7 € [—5, 10] under condition that z% + y% = 1 for
T=1

3 Some Results

We considered cases when the relative motion of the point B is parabolic, hyperbolic
and elliptic. Below we shall restrict ourselves with discussion of results for the
parabolic orbit of point P. ;

At first we considered the simplest model when initial orbits of test points were
circular. When the motion is direct (Fig. 1, 3) a transient spiral structure is formed
and disappeared. Nothing interesting one can see in the case of retrograde motions
for 4 = 0.1 ) (Fig. 2), but a rin structure can be formed from retrograde particles
for larger i (see Fig. 4 for u = 0.2).

When masses are equal (¢ = 1) the most of particles on direct orbits are captured
by passing point B (Fig. 5). No spiral structure is formed but there are some
evidences tails formed by thrown particles. The most of paricles on retrograde
orbits leave the system and the rest form the ring structure (Fig. 6).

When the orbits of test particles are elliptical (see Fig. 7 for i = 0.5) the influence
of the passing point is not so significant.

In the case of the circular restricted three-body problem the resonance phenom-
ena, described by Lindblad (1960) are significant for small . The cloud of test
particles is deformed and the spiral structure is developed. The larger u, the more
significant is the spiral structure that is transient and unstable in the case of direct
orbits. The stable spiral structure develops in the case of retrograde orbits.

When the point B moves along a hyperbolic orbit, a relatively stable spiral
structure results in the case of direct orbits of test particles.
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Figure 1. Direct motions, pu
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Figure 2, Retrograde motions, p = 0.1
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Figure 3. Direct motions, x4 = 0.2
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Figure 4. Retrograde motions, u = 0.2
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Figure 5. Direct motions, y = 1
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Figure 6. Retrograde motions, u : 0.5
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