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Fig. 11.—Near-IR —optical color-color plots separated by rotational velocity, Vi (km s 1), for the BdJOO sample. Galaxy center point types correspond to the

level of nuclear activity in the galaxies (trends with colors and their gradients with nuclear activity were looked for but none were found, possibly because of small
statistics).
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ABSTRACT

We investigate optical and near-IR color gradients in a sample of 172 low-inclination galaxies spanning
Hubble types SO—Irr. The colors are compared with stellar population synthesis models from which luminosity-
weighted average ages and metallicities are determined. We explore the effects of different underlying star
formation histories and additional bursts of star formation. Our results are robust in a relative sense under the
assumption that our galaxies shared a similar underlying star formation history and that no bursts involving more
than ~10% of the galaxy mass have occurred in the past 1-2 Gyr. Because the observed gradients show radial
structure, we measure ““inner” and ““outer” disk age and metallicity gradients. Trends in age and metallicity and
their gradients are explored as a function of Hubble type, rotational velocity, total near-IR galaxy magnitude,
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ABSTRACT

We have used a large sample of low-inclination spiral galaxies with radially resolved optical
and near-infrared photometry to investigate trends in star formation history with radius as a
function of galaxy structural parameters. A maximum-likelihood method was used to match
all the available photometry of our sample to the colours predicted by stellar population
synthesis models. The use of simplistic star formation histories, uncertainties in the stellar
population models and considering the importance of dust all compromise the absolute ages
and metallicities derived in this work: however, our conclusions are robust in a relative
sense. We find that most spiral galaxies have stellar population gradients, in the sense that
their inner regions are older and more metal rich than their outer regions. Our main
conclusion 1s that the surface density of a galaxy drives its star formation history, perhaps
through a local density dependence in the star formation law. The mass of a galaxy is a less
important parameter; the age of a galaxy is relatively unaffected by its mass; however, the
metallicity of galaxies depends on both surface density and mass. This suggests that galaxy-
mass-dependent feedback is an important process in the chemical evolution of galaxies. In
addition, there is significant cosmic scatter suggesting that mass and density may not be the
only parameters affecting the star formation history of a galaxy.
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clusters lie at the opposite end of the sequence. The
presence or absence of horizontal branch stars has only
a minor influence on a cluster’s location in this
diagram, and the low values of Q(ugr) and Q(vgr) that
are characteristic of metal-poor globular clusters evi-
dently result from the weakness of absorption lines in
their # and v passbands.

c) The Clusters of the Magellanic Clouds in the
Q-Q Diagram

Figure 3 is a plot of the Magellanic Cloud clusters in
the Q(ugr), Q(vgr) plane, based on the data in Table 2.
The main result illustrated is that the clusters define a
sequence in this plane. The sequence has been arbi-
trarily segmented, and zones have been drawn to define
a seven-type classification scheme for these clusters.
The corresponding assigned types are listed in Table 2.
This classification is merely a crude representation of
the cluster sequence, and it is the sequence itself that is
the physically significant thing.

There is no evidence in Figure 3 that the sequences
defined by LMC and SMC clusters differ. The se-
quence of Magellanic Cloud clusters is, however, very
different from that defined by the globular clusters of
the Galaxy and from that expected for an age sequence
of solar-composition clusters. In Figure 4 a schematic

Vol. 239
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F1G. 3.—Populous clusters of the Magellanic Clouds in the Q-Q
plane. Open and closed circles represent clusters of the SMC and
LMC, respectively. The Cloud clusters form a sequence in this
diagram. The sequence has been arbitrarily segmented, and the
zones drawn in this figure define a classification scheme.

Location on these sequences will be an age indicator
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—> High-z galaxies: younger ages, lower stellar masses!
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Summary I. - Photometry

e Optical & near-IR model behaviors are understood.

e Future stellar models with more realistic and
sophisticated overshooting and TP-AGB should match
red integrated near-IR colors. (CB10)
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Summary I. - Photometry

e And... SFHs + CEHs !!
for a realistic composite stellar populations models!!




Summary I. - Photometry

e BCO3(CB10) & MOS5: solar-scaled models (fixed)
- Dotter et al. (2007), Lee et al. (2009) introduce

stellar population models

with different chemical mixture (flexible).




Project Summary

Collaborative Research:
New Standard Stellar Population Models

Intellectual Merit: The proposed set of stellar population models (1sochrones plus stellar
colors and spectra) will set a new standard of completeness and excellence. The most
novel feature of the models is that they will incorporatg flexible chemistry|so that almost

any interesting chemical mixture can be interpolated. Abundance will be described by

parameters for He/H. C, N, O, three choices for “alpha™ element mixture, and an overall
scaling factor for heavy element abundance. The proposed models will be generated from
PHOENIX model atmospheres for stellar fluxes and low-temperature opacities, OPAL
interior opacities, and a state-of-the-art stellar evolution code, DSEP, which incorporates
accurate equations of state, helium diffusion, heavy element diffusion, and convective
overshooting. Known flaws and omissions (temperature issues, mass-loss, late-stage
evolution. binarism) of current models will be eliminated or minimized.

Our goals are to demonstrate|10% absolute mean ages|derived from a single integrated

light spectrum, to derive ages for a sample of local galaxies, to discover the origin of the

scatter in 1500-V among elliptical galaxies, to measure He, O, Cr, and Ni abundances
from integrated light (high risk). and to measure C, N, Ca, Si. Sc, V, Ti. Fe. and Mg
abundances from integrated light (low risk). This new level of detail will open a whole
new set of constraints for nucleosynthetic enrichment in clusters and galaxies. As a
byproduct, homogeneous data for a series of star clusters of widely varying age and
abundance will be collected and made available.
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STELLAR POPULATION MODELS AND INDIVIDUAL ELEMENT ABUNDANCE
SENSITIVITY OF STELLAR EVOLUTION MODELS
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ABSTRACT

Integrated light from distant galaxies is often compared to stellar population models via the equivalent widths of
spectral features —spectral indices —whose strengths rely on the abundances of one or more elements. Such compar-
isons hinge not only on the overall metal abundance, but also on relative abundances. Studies have examined the
influence of individual elements on synthetic spectra but little has been done to address similar issues in the stellar
evolution models that underlie most stellar population models. Stellar evolution models will primarily be influenced
by changes in opacities. In order to explore this issue in detail, 12 sets of stellar evolution tracks and isochrones have
been created at constant heavy element mass fraction Z that self-consistently account for varying heavy element
mixtures. These sets include scaled-solar, cv-enhanced, and individual cases where the elements C, N, O, Ne, Mg, Si,
S, Ca, Ti, and Fe have been enhanced above their scaled-solar values. The variations that arise between scaled-solar
and the other cases are examined with respect to the H-R diagram and main-sequence lifetimes.

Subject headings: stars: abundances — stars: evolution
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ABSTRACT

The first paper in this series explored the effects of altering the chemical mixture of the stellar population on an
element-by-element basis on stellar evolutionary tracks and isochrones to the end of the red giant branch. This paper
extends the discussion by incorporating the fully consistent synthetic stellar spectra with those isochrone models in
predicting integrated colors, Lick indices, and synthetic spectra. Older populations display element ratio effects in
their spectra at higher amplitude than younger populations. In addition, spectral effects in the photospheres of stars
tend to dominate over effects from isochrone temperatures and lifetimes, but, further, the isochrone-based effects
that are present tend to fall along the age—metallicity degeneracy vector, while the direct stellar spectral effects
usually show considerable orthogonality.

Key words: stars: abundances — stars: evolution
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New stellar population models with flexible chemistry:

Isochrone effects + spectral effects with full internal consistency
on Lick spectral and broadband color indices

Caveat: Only at solar metallicity & No evolved stars
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Summary II. — flexible chemistry

Paper I: Isochrones (Dotter et al. 2007)
Paper II: Integrated sp+ph indices
(H.—c. Lee et al. 2009)

Paper III: Full range of metallicity
Paper IV: Effects of HB, AGB stars...

Comparison with observational data

(~20 Virgo cluster galaxies from Kitt Peak 4m)
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ABSTRACT

We present simple stellar population (S5P) models with scaled-solar and «-element-enhanced abundances. The
S5F models are based on the Dartmouth Stellar Evolution Database, our library of synthetic stellar spectra,
and a detailed systematic variation of horizontal-branch (HB) morphology with age and metallicity. In order
to test the relative importance of a variety of S5F model ingredients, we compare our 55FP models with
integrated spectra of 41 Milky Way globular clusters (MWGCs) from Schiavon et al. Using the Mg & and
Cad4227 indices, we confirm that Mg and Ca are enhanced by about +0.4 and +0.2 dex. respectively, in
agreement with results from high-resolution spectra of individual stars in MWGCs. Balmer lines, particularly
Hy and Hé, of MWGCs are reproduced by our e-enhanced SSP models not only because of the combination
of isochrone and spectral effects but also because of our reasonable HB treatment. Moreover, it is shown
that the Mg abundance significantly influences Balmer and iron line indices. Finally, the investigation of
power-law initial mass function (IMF) variations suggests that an IMF much shallower than Salpeter is
unrealistic because the Balmer lines are too strong on the metal-poor side to be compatible with observations.
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EFFECTS OF «-ELEMENT ENHANCEMENT AND THE THERMALLY PULSING-ASYMPTOTIC GIANT
BRANCH ON SURFACE BRIGHTNESS FLUCTUATION MAGNITUDES AND BROADBAND COLORS
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ABSTRACT

We investigate the effects of @-element enhancement and the thermally pulsing-asymptotic giant branch (TP-AGB)
stars on the surface brightness fluctuation (SBF) magnitudes and broadband colors of simple stellar populations and
compare to the empirical calibrations. We consider a broad range of ages and metallicities using the recently up-
dated Teramo BaSTI isochrones. We find that the a-element-enhanced f~band SBF magnitudes are about 0.35 mag
brighter and their integrated V' — I colors are about 0.02 mag redder, mostly because of oxygen-enhancement
effects on the upper red giant branch and AGB. We also demonstrate, using both the Teramo BaSTI and Padova
isochrones, the acute sensitivity of SBF magnitudes to the presence of TP-AGB stars, particularly in the near-1R.
but in the [ band as well. Empirical SBF trends therefore hold great promise for constraining this important but
still highly uncertain stage of stellar evolution. In a similar vein, non-negligible disparities are found among several
different models available in the literature due to intrinsic model uncertainties.
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Conclusions

Optical & near-IR model behaviors are understood.

Future stellar models with more realistic and sophisticated
overshooting and TP-AGB should match red integrated
near-IR colors. (CB10)

And... SFHs + CEHs !!
for a realistic composite stellar populations models!!

BCO03(CB10) & MO05: solar-scaled models (fixed)
- Dotter et al. (2007), Lee et al. (2009) introduce

stellar population models

with different chemical mixture (flexible).
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SFH effects
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Star burst effects
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Star burst effects
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