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Abstract

Method one: by combining a sampling parameter related to an isolating integral of the stellar motion, an optimisation of
the mixture approach, and a maximisation of the partition entropy for the constituent populations of the stellar sample.

Method two: by segregating into different kinematical components in terms of the stellar orbital parameters.
Method three: by approaching a maximum entropy velocity distribution to samples selected in terms of stellar eccentricity

layers.
Working samples: HIPPARCOS and Geneva-Copenhagen survey catalog.
Results: kinematical characterisation of large-scale structures, such as thin disc, thick disc and halo, and identification of

small-scale structures, such as moving groups in the solar neighbourhood.
Consequences: confirmation of the Titius-Bode-like law forradial velocity dispersions and explanation of the apparent

vertex deviation of the disc from the swinging of two major kinematic groups around the LSR, by predicting a continuously
changing orientation of the disc pseudo ellipsoid.

Method I: MEMPHIS algorithm

A sampling parameterP is defined to introduce a hierarchy into the sample (Alcobé &Cubarsi 2005 and Cubarsi et al. 2010),
so that a set of nested subsamples is recursively drawn from the total sample. Some properties, which are associated with
isolating integrals of the star motion, such as the absolutevalues of the velocity component perpendicular to the Galactic
plane,P = |W |, of the rotational velocity,P = |V |, or of the total velocityP = |(U,V,W)| , are used as sampling parameters to
discriminate between populations. A bimodal pattern of twoGaussian distributions is recursively applied to identifydifferent
kinematic behaviours within each subsample. In each case, the optimal sampling parameter provides the leastinformative
subsample associated with the more representative mixtureparameters, as well as the least error in the mixture approach.
For samples drawn from the HIPPARCOS catalogue (ESA 1997) and the Geneva-Copenhagen survey (GCS) of the Solar
neighbourhood (Nordtröm et al. 2004), the best segregation of thin and thick discs is obtained by using the sampling parameter
P = |(U,V,W)|, while the halo is detached from the total disc from the sampling parameterP = |W |.

Sample #S Pop. P σU σV σW U V W ε [◦]
HIP 12,516 t 91.5% |(U,V,W)| =230 28.2± 0.2 16.9± 0.2 12.5± 0.1 −11.2± 0.3 −14.7± 0.2 −7.1± 0.1 13± 1

1,003 T 7.3% 69.3± 1.3 37.9± 0.9 42.9± 0.9 −7.1± 2.2 −60.8± 1.2 −9.7± 1.4 4± 2
159 H 1.2% |W | =180 179.6± 7.8 89.0± 6.3 90.8± 6.0 −0.61± 14.2 −234.9± 7.0 −10.8± 7.2 −6± 3

GCS 12,415 t 93.8% |(U,V,W)| =230 29.7± 0.2 17.8± 0.2 13.9± 0.1 −10.4± 0.3 −15.2± 0.2 −7.1± 0.1 11± 1
763 T 5.7% 65.7± 1.5 36.7± 1.1 41.5± 0.9 −3.4± 2.4 −59.3± 1.3 −7.1± 1.5 5± 2
62 H 0.5% |W | =170 178.6± 12.2 113.7± 15.0 110.5± 14.2 1.6± 22.7 −230.8± 14.4 −16.4± 14.0 −5± 10

Table 1: Optimal mixture parameters for the HIPPARCOS (HIP)and GCS samples. The displayed quantities are: size of
the optimal sample, sampling parameter, segregated population (t=thin disc, T=thick disc, H=halo) and mixture proportion,
velocity dispersions, mean velocities (both in km s−1), and vertex deviation.

Method II: Galactocentric orbits

The orbital parameters are used to classify stars into Galactic subsystems such as the thin disc, the thick disc, and the halo
(Vidojević & Ninković 2008, 2009; Cubarsi et al. 2010). For the GCS catalogue, we assume that any star crossing the
boundary of 70 kpc adopted in the model of the Galaxy is a halo star. There are 13 such stars in the sample, of which 5
have angular momentum that differs from that of the Galactic rotation. Also, 26 other samplestars with a GalactocentricV
component of opposite sign to that of the Galactic rotation are classified as halo stars. Stars of the Galactic disc are expected
to move around the Galactic centre in nearly planar orbits sotheir vertical eccentricities should not be significant. For this
reason, 25 stars in the sample withev > 0.4 are classified as halo stars. In the case of nearly planar orbits, stars of the disc are
not expected to have a very high interval ofR so a limit to theplanar eccentricity should also exist. So 10 sample stars with
ep > 0.8 are classified halo stars. There is one sample star that, despite belonging to the halo according to any criterion given
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Sample #S Pop. σU σV σW U V W ε [◦]
GCS 12,566 t 95.0% 30.2± 0.4 19.0± 0.3 13.5± 0.2 −9.6± 0.6 −16.1± 0.4 −7.1± 0.3 10± 1

599 T 4.5% 67.8+4.1
−3.6 40.9+2.5

−2.2 46.2+2.8
−2.5 −16.4± 5.5 −52.4± 3.3 −7.5± 3.7 1± 2

13,165 D 99.5% 32.9± 0.4 21.9± 0.3 16.5± 0.2 −9.9± 0.6 −17.4± 0.4 −7.1± 0.3 10± 1
75 H 0.5% 165+32

−23 125+24
−17 110+21

−15 −6.9± 2.1 −201± 24 −14.4± 3.3 −9± 7

Table 2: Segregation of populations for GCS sample from the Galactic orbits of the stars.

above, is assigned to the halo because its highestZ amplitude takes place almost in the middle of the interval inR. Therefore,
we finally identify 75 (about 0.5%) halo stars.
The remaining stars belong to the Galactic disc. The variations in the shape and size of Galactocentric orbits for stars of
the Galactic disc are correlated with their eccentricities, and for sufficiently high values of bothep andev, the sides of the
orbital trapezia become curvilinear. We identified an approximate border where curving of the sides of orbital trapeziabegins.
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Figure 1: Vertical eccentricity versus planar eccentricity
for total disc stars. The broken line (red) separates stars
of the thin disc (green) from those of the thick disc (blue).

We present this border as a broken line in theev versusep plot for
the disc stars. The equations of the straight lines containing the
segments are

ep ∈ [0, 0.2] : ev = −0.25ep + 0.15,
ep ∈ [0.2, 0.5] : ev = −0.33ep + 0.17.

(1)

The vertex occurs at (0.2, 0.1). The points lying inside thisbro-
ken line, 12,566 (95%), represent the stars of the thin disc,those
lying outside it, 599 (4.5%), the thick-disc ones. The elements of
the velocity ellipsoid, the mean heliocentric velocity components,
dispersions, and the vertex deviation with their uncertainties for
the halo, thick disc and thin disc are given in Table 2. In the
case of the mean values and dispersions, the uncertainties corre-
spond to the 95% confidence intervals, whereas the uncertainty in
the vertex deviation is determined following the formula for error
propagation.

Titius-Bode-like law (TBLL)

This empirical law (Alcobé & Cubarsi 2005) may be related with the average epicycle energyER ∼ σ
2
U of the stars rep-

resentative of the disk heating process. For each population, the radial velocity dispersion continuously increases with the
sampling parameterP = |(U,V,W)|, up to reach some steady values, which are collected by the TBLL. Now, by adding the
halo component, we may certainly certify this relationship, and associate the discrete local stellar populations withthe radial
dispersions expressed by the equation

σU(n) = 6.6

(

4
3

)3n+2

; n = 0, 1, 2, 3. (2)

n σU -TBLL σU -MEMPHIS stellar pop.
0 6.6 - spherical pop. at birth
1 12 12 early-type stars
2 28 28 thin disk
3 66 65 thick disk
4 156 156 halo

Method III: Maximum entropy approach

If an extended set of moments is available, this method provides a linear algorithm leading to a fast and suitable estimation of
the velocity distribution (Cubarsi 2010). It can be used to model multimodal distributions that cannot be described through
Gaussian mixtures. The maximum entropy function has the form

f (V) = eP(V)
, (3)

whereP(V) is a power series of the velocity components containing as many terms as the number of moment constraints.
The boundary conditions, which are usually assumed for the solutions of the stellar hydrodynamic equations, along withan
integral property involving the velocity moments (Cubarsi2007), lead to a Gramian system of equations to determine the
polynomial coefficients of the phase density function.
To describe the small-scale disc structure, several truncated distributions have been analysed in terms of metallicity, colour,
maximum distance to the Galactic plane, and eccentricity. In particular, the eccentricity, which is directly related to the isolat-
ing integrals of the star motion, is more discriminating than the absolute velocity for selecting subsamples. A representative
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Figure 2: Series of contour plots and distributions on theUV plane for GCS subsamples selected from|zmax| < 0.5 kpc and
eccentricities up to 0.01, 0.02, 0.03, 0.05, 0.1, 0.15, 0.2 and 0.3. The origin is at the Solar velocity.
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thin disc, containing 90% of the whole sample, is selected from maximum eccentricity 0.3 and|zmax| ≤ 0.5 kpc. Its central
moments are similar to the ones obtained for the thin disc of Tables 1 and 2. Within the thin disc, the eccentricity behavesas
an excellent sampling parameter that distinguishes between different eccentricity layers allowing the subjacent structures of
Figure 2 to be visualised.

Orientation of the disc velocity pseudo-ellipsoid

For stars with a similar period of oscillation around the LSRin the radial direction (under the epicyclic approximation),
several simulations allow us to confirm that a two-peaked distribution of radial velocities, such as for eccentricity 0.01, is due
to a lognormal distribution of the eccentricities. For a mixture of stars with different periods and a lognormal distribution
of the velocity amplitude of the stellar orbits, the bimodalshape is maintained. However, if the number of stars with nearly
vanishing amplitude increases, then the radial velocity distribution becomes unimodal, similar to the total thin discsample
with e = 0.3.
The bimodal behaviour of the central disc associated with the previous major subsystems may then be explained from two
different phenomena. On one hand, it may be a perturbation similar to a pressure wave acting in part along the radial direction
that induces an oscillation of the radial velocity around the LSR. On the other hand, both kinematical major groups, which
actually are placed at the solar position, are in opposite oscillation states. In addition both groups have a difference of about
20 km s−1 in rotation mean velocity, so that one group of stars actually surpasses the other group. Therefore, the apparent
vertex deviation of the thin disc may stem from the swinging of those major kinematic groups. A scenario of a continuously
changing orientation of the disc pseudo ellipsoid is then possible.
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Figure 3: (Left) Velocity ellipsoids, in blue, depicted from total moments corresponding to the sample with eccentricities
e ≤ 0.3. They are centred in Galactocentric velocitiesΠ0 = 15,Θ0 = 220, andΠ0 = −15,Θ0 = 200, with the LSR placed in
the middle of them. Thin disc isocontours, in red, with positive vertex deviation, are generated from the inner structure. The
green dashed partial ellipsoids represent a situation withthe opposite radial motions. (Right) Contour plots in theUV plane
(heliocentric velocities) for the samples with maximum eccentricity e = 0.15 (blue) ande = 0.3 (red).
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Alcobé S., Cubarsi R. 2005, A&A, 442, 929
Cubarsi R. 2007, MNRAS 207, 380
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Vidojević S., Ninković S. 2009, AN, 330, 46

4


