Вопросы оснащения РТ-22 КрАО приемной аппаратурой миллиметрового диапазона длин

И.В. Лапкин^{1,2}, И.И. Зинченко¹, В.Ю. Белицкий², А.Е. Вольвач³, В.М. Шульга⁴

¹Институт прикладной физики РАН, г. Нижний Новгород ²Чалмерский Технологический Университет, Гетеборг, Швеция ³Крымская Астрофизическая Обсерватория ⁴Радиоастрономический институт НАН Украины, Харьков

СИС приемник для РТ-22 КрАО

Рис. 3. Примеры измеренных спектров: HCN J = 1 - 0в S87 (а) и ¹³Co J = 1 - 0 в S231 (б).

rec

- Оснащение телескопа приемным комплексом в полосе 84-115 ГГц
- Реализация облучения телескопа РТ-22 в диапазонах 20.8-23.3 ГГц и 35-38.6 ГГц с помощью одиночного гофрированного рупора.

Сравнительный анализ матричного и 2SB приемника

	Приемник с разделением полос	Канал матричного приемника
Тип смесителя	SSB	DSB
Рабочий диапазон частот	85-117	85-110
Шумовая температура,	<40K	<80К до 110 ГГц с
приведенная к однополосному		последующей деградацией до
режиму на фланце окна		100 К (Рис.2)
Кросс-поляризация	<-23дБ	<-16дБ
Полоса ПЧ	4-8 ГГц2	2-4 ГГц

Преимущества	Проблемы		
Низкая шумовая температура (~ 40 К в однополосном режиме).	Жесткие технологические требования по изготовлению элементов приемника		
Широкая полоса анализа (можно независимо использовать обе полосы ПЧ).	Сложность калибровки и настройки		
Возможность двухполяризационного приема.	Подавление зеркального канала неравномерно в полосе приема и даже при оптимальной настройке может достигать ~-10 дБ		
Стабильность	Эксплуатационные расходы		

Внешний вид приемного комплекса

Model				SRDK- 415D- F50H		
1 st Stage Capacity	Watts @ 50 Hz Watts @ 60 Hz	35 W @ 50 K 45 W @ 50 K				
2 nd Stage Capacity	Watts @ 50 Hz		1.5 W @ 4.2 K			
	Watts @ 60 Hz		1.5 W @ 4.2 K			
Lowest Temperature 2 nd Stage †			<3.5 K			

ТЕСТОВЫЕ НАБЛЮДЕНИЯ В ОНСАЛА

Тестовый криостат

Система виброизоляции

Облучатель диапазона длин волн 3 мм для PT-22

Геометрия гофрированного облучателя для 3 мм приемника

Распределение поля в дальней зоне рупора

Двухдиапазонный облучатель на 20.8-23.3 ГГц и 35-38.6 ГГц

Основные проблемы реализации двухполосного облучателя 20.8-23.3ГГц и 35-38.6 ГГц

- Минимизация доли мод высокого порядка на выходе ОМТ (или диплексера).
- Оптимизация геометрии рупора для обеспечения частотнонезависимого облучения вторичного зеркала.

Геометрия гофрированного широкополосного облучателя 20.8-23.3ГГц + 35-38.6 ГГц

Оптимизируемые параметры геометрии рупора

- Профиль рупора
- Глубина канавок
- Ширины канавок и гребней

окончание процесса оптимизации

параметры рупора удвлетворяют целям оптимизации

сравнение с целями оптимизации

определение оптимальной геометрии из множества полученнных вариантов

подпрограма расчета оптимизируемых параметров

определение

возможных вариантов

геометрии рупора

модифицированным

Simplex методом

задание начальной геометрии рупора и параметров оптимизации

определение текущей геометрии рупора

подпрограма расчета оптимизируемых параметров

расчет коэффициентов dP/ dL в предположении задачи линейной оптимизации

определение исходной

системы линейных

неравенств

ограничения на геометрические размеры и границы оптимизации

Распределение поля на вторичном зеркале. Нижний рабочий диапазон.

Распределение поля на вторичном зеркале. Верхний рабочий диапазон.

Коэффициент отражения (дБ)

Уровень кросс-поляризационной составляющей, К_хр (дБ)

-32

-34

Эффективная площадь антенны, A_eff (%)

Эффективность облучения антенны=A_eff*K_xp*(1-K_tr) (%)

Заключение

- Начата разработка СИС приемника с разделением полос диапазона длин волн 3 мм для РТ-22 КрАО. В качестве прототипа используется приемник для 20м антенны в Онсала (Швеция). Изготовлен тестовый криостат для приемника. Выполнен расчет квазиоптической схемы приемника, в частности, облучателя.
- Выполнен расчет двухдиапазонного (20.8-23.3ГГц и 35-38.6 ГГц) гофрированного рупора, который обеспечивает приемлемую эффективность облучение в обоих диапазонах.