
DYNAMICS AND EVOLUTION OF DISC GALAXIES, Puschino-Moscow, May 31 - June 4, 2010

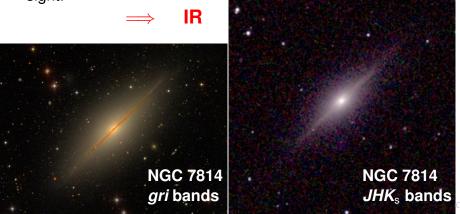
2MASS photometry of edge-on spiral galaxies

Natalia Sotnikova, Vladimir Reshetnikov, Alexander Mosenkov

Saint-Petersburg State University

└─EDGE-ON GALAXIES └─*gri* bands

2


These objects are of considerable interest for several reasons

They provide the possibility to investigate

- the radial and vertical structure of their discs simultaneously;
- (2) peculiarities in outer regions (disc's truncutions, warps);
- (3) the structure of dust lanes;
- (4) the structure and the shape of bulges.

Difficulties

It is needed to take into account the influence of dust and the fact that we get emission integrated along the line of sight.

Motivation

The aim: is to investigate statistically the photometric structure of various morphological type edge-on galaxies in IR bands.

Motivation

The difference from previous works:

(Roelf de Grijs, 1997; Dmitri Bizyaev & Sophia Mitronova, 2002, 2010)

- we compiled a large volume sample: 175 galaxies;
- we chose galaxies of various morphological types:

from S0 to Sd;

- we used 2D decomposition instead 1D cuts;
- we determined the structural parameters not only of discs but also of bulges.

Source of image data 2MASS survey (Two Micron All Sky Survey) Two 1.3m automatic telescopes Covers the whole sky in three IR bands: $J (1.25 \ \mu m), H (1.65 \ \mu m), K_s (2.17 \ \mu m)$ ~ 3 billion galaxies brighter than $K_s = 14^m.5$

http://www.ipac.caltech.edu/2mass

Source of objects

2MFGC (2MASS-selected Flat Galaxy Catalog)

Mitronova et al. 2003

Contains **18020** disc-like galaxies covering all the celestial sphere

The objects were selected from the Extended Source Catalog of the 2MASS (XSC 2MASS) according with their 2MASS axial ratio a/b > 3

Selection criteria

- axial ratio for the combined J + H + K image, b/a < 0.2
- K-band fiducial elliptical
 Kron radius, *R_K* > 30"
- Hubble type ranging from S0-Sd
- non-interacting galaxies

175 galaxies $-K_s$ -filter **169** galaxies -H-filter **165** galaxies -J-filter

Туре	Number	Percentages
S0, S0-a	41	23.4
Sa	11	6.3
Sab	15	8.6
Sb	47	26.9
Sbc	21	12.0
Sc	36	20.5
Scd	4	2.3
Total	175	100

The full sample is uncomplete but the subsample of galaxies with angular radius r > 60'' is **complete** (92 galaxies)

Decomposition

Photometric model DISC:

$$I(r,z) = I(0,0) e^{-r/h} \operatorname{sech}^2(z/z_0)$$

for edge-on galaxies:

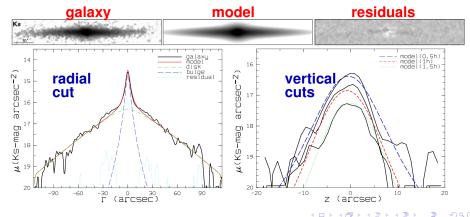
$$I(r,z) = I(0,0) \frac{r}{h} K_1\left(\frac{r}{h}\right) \operatorname{sech}^2(z/z_0)$$

BULGE (Sérsic law):

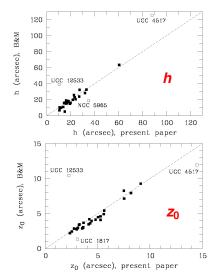
$$I_{\rm b}(r) = I_{0,{\rm b}} e^{-\nu_{\rm n}[(r/r_{\rm e,b})^{1/n}]}$$

BUDDA (**BU**lge/**D**isc Decomposition Analysis) – 2D analysis of an image (de Souza et al. 2004)

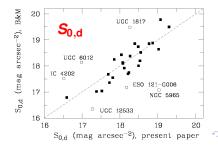
Decomposition

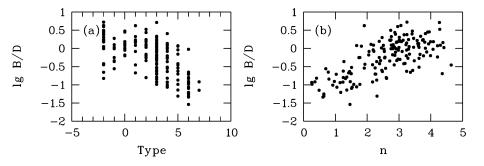

Parameters
DISC: $\mu_{0,d}$, M_d , h, z_0 , h/z_0 BULGE: $\mu_{e,b}$, M_b , $r_{e,b}$, n, $q_b(=b/a)$ n = 1 - exponential law
n = 4 - de Vaucoulers' law

GALAXY: B/D, m_{gal} , M_{gal} , $+v_{rot}$



Decomposition


An example ESO-240-G011, K_s-band


Comparison with previous works

30 galaxies in common with the sample of Bizyaev & Mitronova 2002

Morhological type vs Sérsic index

14

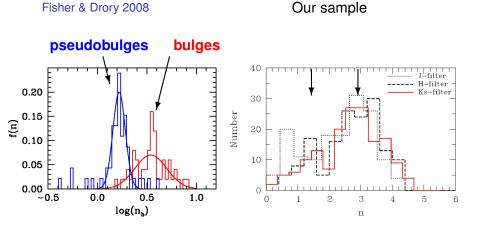
–EDGE-ON GALAXIES └─RESULTS

Classical bulges

- *n* ≥ 2
- dynamically hot
- relatively featureless
- red colors
- same or similar FP relations as for ellipticals
- appear to be similar to E-type galaxies

Possible origins:

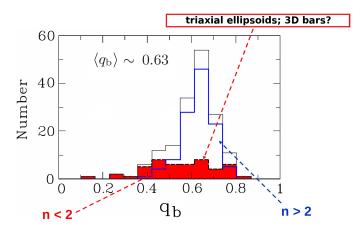
hierarchical clustering via minor or major mergers

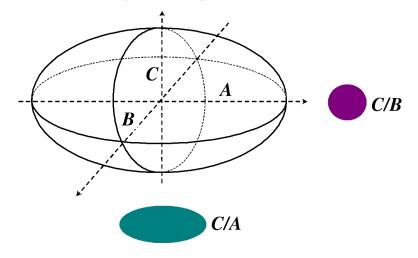

Pseudobulges

- *n* ≤ 2
- kinematics dominated by rotation
- flattening similar to that of their outer disk
- nuclear bar, ring and/or nuclear spiral

Possible origins:

secular evolution – long-term dynamical evolution (bar formation, vertical and radial transport, disk heating, new star formation, bar destruction?)


Bimodality of the distribution over Sérsic indices


16

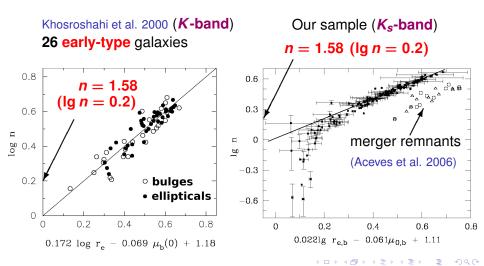
The intrinsic shape of bulges

 $q_b = b/a$ *a*, *b* are apparent semi-major and semi-minor axes of a bulge

The intrinsic shape of bulges

The intrinsic shape of bulges n > 2 (classical bulges)

The distribution over q_b has a rather **narrow peak** at $q_b \approx 0.65$.

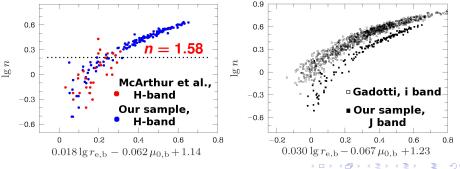

It is consistent with a suggestion that bulges in early-type spirals are nearly **oblate** spheroids with moderate flattening.

$n \leq$ 2 (pseudobulges)

The distribution over **q**_b is very **wide**, spreading from flat bulges up to nearly spherical ones.

It may be attributed to triaxial, near prolate bulges that are seen from different projections – along the major axis and perpendicular to it.

Photometric plane for bulges


20

Photometric plane for bulges

data from MacArthur et al. 2003 *H*-band

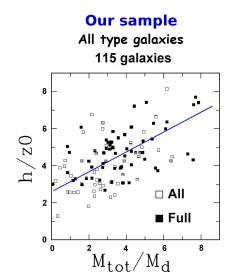
121 face-on and moderately inclined late-type spirals

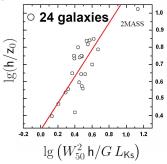
data from Gadotti 2009 (*i*-band) 2D bulge/bar/disc decompositions of \sim 1000 galaxies from the SDSS

Photometric plane for bulges

$n \ge 2$ (classical bulges)

The galaxies with $\lg n \ge 0.2$ lying on the PhP, that is built for these galaxies, has a **small** scatter.

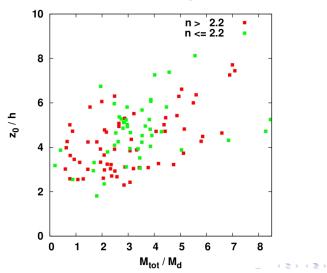

The model of **collisionless merging** fairly well reproduce the slope of the PhP.


$n \leq$ 2 (pseudobulges)

The galaxies with $\lg n \leq 0.1$ do not correspond to the main PhP and form their own plane with a **large scatter**.

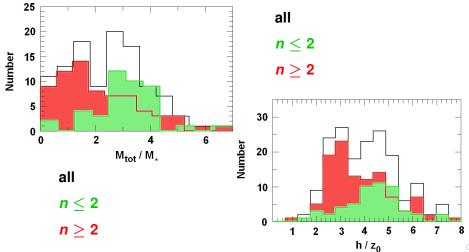
The curvature of the PhP towards small values of *n* may reflect the quite different nature of such bulges, formed, for example, via secular evolution of discs.

The Dark halo and disc flattening



Zasov et al., 2002 Bulgeless galaxies

$$egin{array}{lll} M_{
m tot} \ = \ 4 \ h \ v_m^2/G \ M_{
m d} \ = \ (M/L)_{
m Ks} \ L_{
m d}^{
m Ks} \ _{{
m osc}} \end{array}$$


The Dark halo and disc flattening

э

24

The Dark halo and disc flattening

Conclusions

- We compiled a large sample of edge-on spiral galaxies with performed 2D bulge/disc decomposition of 2MASS galaxies images in *J*, *H* and *K*s passbands.
- (2) We considered main relations between global structural parameters of discs and bulges.
- (3) We obtained several new evidences in favour of existence of two quite different populations of bulges in spiral galaxies – classical bulges and pseudobulges.