Outline	Introduction	Motivation	The boring stuff	Pretty Pictures and Animations	Summary
	0000	0	0	000000000	0
			00		

Bar-Driven Dynamic Structures in Local Velocity Space

Эско Гарднер и Кхрис Флинн esgard@utu.fi

Dept. of Physics and Astronomy University of Turku, Finland

June 4, 2010

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Outline	Introduction	Motivation	The boring stuff	Pretty Pictures and Animations	Summary
	0000	0	0	000000000	0
			00		

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

Outline

Introduction

Hercules stream as a testing ground

Motivation

Background

The boring stuff

Models'n'things A quick word on methodology

Pretty Pictures and Animations Simulation results

Summary

This is...

Outline Introduction Motivation The boring stuff Pretty Pictures

Pretty Pictures and Animations

Summary

The one we're interested in

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

- We know that a bar can cause dynamical structure
- The dynamical signature might be seen locally,
- The problem with the Milky Way seems to be that:
- There are two different observed large-scale (kpc) bars. (see e.g.: Benjamin et al. 2005, Bissantz & Gerhard 2002)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- So let's study the effects of two bars separately.
- And then go for two.

- Standard axisymmetric stuff:
- Bulge, Halo, Dark Halo (see Flynn et al. 1996)
- Disk, scale length of 3 kpc (new, in comparison to Flynn et al. 1996)
- Non-standard triaxial stuff:
- Ferrers' n = 2 potential (Pfenniger 1984, Ferrers 1877)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

- $\rho = \rho_0 (1 m^2)^n$ • $m = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$
- ho= 0 , when $m\geq$ 1

Motivatio 0 The boring stuff ○ ●○ Pretty Pictures and Animation: 0000000000

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Summary O

Backwards restricted method

- Dehnen (2000)
- Create a library of orbits
- Assign a weight for each point of phase-space for a certain orbit
- Compile the orbits into a table of some kind
- Interpret

Quick words on simulations

- Uniform 100 x 100 grid of velocity points, starting at our local position.
- Velocities U:[-50,50], V: [-150:50], 2 kms⁻¹ steps
- Full orbital history for each velocity point over 1 Gyr
- Weighted values for each point in velocity-space;
- Corrected for the local circular velocity, and asymmetric drift. See Lewis and Freeman (1989).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

<ロト < 聞 > < 注 > < 注 > æ

Outline	Introduction
	0000

Motivation O The boring stuff

Pretty Pictures and Animations

Summary O

What does it do? - Mass

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Outline	Introductio
	0000

Motivation 0 The boring stuff 0 00 Pretty Pictures and Animations

Summary O

OLR variations - Long Bar

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ● ●

Outline	Introduction
	0000

Motivation 0 The boring stuff 0 00 Pretty Pictures and Animations

Summary O

Angle variations - Long Bar

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction Motivation 0000 0 The boring stuff

Pretty Pictures and Animations

Summary O

Two bars! Phase locked at 1.87.

990

æ

Introduction Motivation

The boring stuff

Pretty Pictures and Animations

Summary O

Two bars! Phase locked at 1.95.

うくぐ

Two bars! Phase unlocked, long at 1.87, Galactic at 1.50

900

æ

Two bars! Phase unlocked, long at 1.50, Galactic at 1.87

Summary

utline Introduct 0000 Motivation O The boring stuff

Pretty Pictures and Animations

Summary O

Two bars! Phase locked at 1.87, half-mass.

500

æ

 Outline
 Introduction
 Motivation
 The boring stuff
 Pretty Pictures and Animations
 Summary

 000
 0
 0
 0000000000
 0
 0

Two bars! long at 1.87, Galactic at 1.50, half-mass.

୍ର୍ଚ୍

The boring stuff

Pretty Pictures and Animations 0000000000

Summary

Potentially something very interesting

- A bar will create structure(s) in velocity space.
- The angle, mass, and speed of the bar will affect it's position and shape in velocity space.
- Two large, massive bars will wreck havok on velocity structure.
- Direct interaction with bars can cause also cause structure in velocity space.
- More details in Gardner & Flynn 2010 (MNRAS 405, p. 545 or arXiv:1002.0551)

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@