Criteria of periodicity and their statistical properties

S. Repin

Space Research Institute of RAS

Pushchino, April 22, 2008

- Criteria of periodicity are the functions of measured values and trial period T, which take large value when the data contain the component with period T and take small value if the data set does not include such a component.
- Criteria of periodicity can be applied to pulsars, variable stars, cepheids, motion of planets and satellites, quasiperiodic oscillations in accretion disks and many other phenomena.

Assume that we have so-called rare pulses: $t_i \quad i = 1, 2, ..., M$

First criterion (Rayleigh criterion) is

$$K_1(T) = \frac{2}{M} \left[\left(\sum_{i=1}^M \sin \frac{2\pi t_i}{T} \right)^2 + \left(\sum_{i=1}^M \cos \frac{2\pi t_i}{T} \right)^2 \right],$$

Where ti are the time moment of events, T is a trial period

Define the phase of event as

$$\varphi_i = t_i - T \cdot \left[\frac{t_i}{T}\right],$$
 $(0 \le \varphi_i \le T),$

And build an m-bin light curve

Criteria K₂, K₃, K₄ are analyze the structure of the light curve and have the form:

$$K_{2}(T) = \frac{m}{M} \sum_{j=1}^{m} \left(n_{j} - \frac{M}{m} \right)^{2},$$
$$K_{3}(T) = 1 - \frac{\min n_{j}}{\max n_{j}},$$
$$K_{4}(T) = \frac{m}{M} \left[\sum_{j=1}^{m-1} (n_{j+1} - n_{j})^{2} + (n_{1} - n_{m})^{2} \right]$$

Properties of the criteria with constant T

Mean values, covariation and correlation matrices

		MK =	(2.033,	8.961,	0.2633	, 20.0	004)		
DK =	$\begin{pmatrix} 4.151 \\ 4.030 \\ 0.0499 \\ 1.563 \end{pmatrix}$	$4.030 \\ 17.98 \\ 0.2247 \\ 40.28$	$\begin{array}{c} 0.0499 \\ 0.2247 \\ 0.0035 \\ 0.5030 \end{array}$	$(1.563) \\ (40.28) \\ (0.5030) \\ (121.4)$	ho =	$\begin{pmatrix} 1 \\ 0.466 \\ 0.414 \\ 0.069 \end{pmatrix}$	$\begin{array}{c} 0.466 \\ 1 \\ 0.897 \\ 0.862 \end{array}$	$0.414 \\ 0.897 \\ 1 \\ 0.773$	$\begin{pmatrix} 0.069 \\ 0.862 \\ 0.773 \\ 1 \end{pmatrix}$

N = 100000 realizations, M = 1000 event in a series

Correlation function

Typical structure of the criteria

Correlation function

Correlation function

q	K_1	K_2	K_3	K_4
1	0.9987	0.7952	0.7398	0.7026
2	0.9948	0.6354	0.5670	0.4708
3	0.9885	0.5199	0.4507	0.3029
5	0.9683	0.4204	0.3552	0.1574
10	0.8782	0.2948	0.2490	0.0658
15	0.7427	0.1886	0.1582	0.0175
20	0.5807	0.1246	0.1042	0.0081
30	0.2598	0.0541	0.0444	0.0029
40	0.0478	0.0153	0.0128	0.0004

Averaging over N = 1000 realizations

Confidence level

To define the confidence level we should build the maxima distribution

		$\delta = 2$	$\cdot 10^{-5}$		$\delta = 2 \cdot 10^{-4}$			
Ν	K_1	K_2	K_3	K_4	K_1	K_2	K_3	K_4
9499 9500	7.4319 7.4338	$24.92 \\ 24.94$	$0.4375 \\ 0.4375$	67.04 67.12	11.1117 11.1136	25.94 25.94	$0.4463 \\ 0.4463$	68.40 68.40
9501	7 4352	24.94	0.4375	67.18 	11.1225	25.96 28.76	0.4463	68.42
9830 9831	9.7275 9.7327	27.80 27.84	$0.4615 \\ 0.4615$	76.54 76.56	13.6883 13.6996	28.78 28.80	0.4672 0.4672	77.48 77.52
9832 9990	9.7591 16.8694	27.86 36.10	0.4615 0.5242	76.66 100.88	13.7476 19.6401	28.82 36.10	0.4672 0.5159	77.70 99.08
9991 9992	17.3255 17.4510	37.02 37.42	$0.5245 \\ 0.5246 \\ 0.5246$	103.04 103.54	19.9599 20.7694	36.18 36.20	$0.5185 \\ 0.5200$	99.98 100.42
9993 9994 9995	17.4652 17.5183 17.5626	38.16 38.22 39.46	$0.5306 \\ 0.5308 \\ 0.5333$	$103.64 \\ 105.92 \\ 106.06$	20.7842 21.3265 21.9388	36.28 37.02 37.28	$0.5246 \\ 0.5276 \\ 0.5282$	102.98 103.04 104.32
9996 9997 9998	17.5744 18.5172	39.70 42.50 43.26	$0.5338 \\ 0.5447 \\ 0.5504$	107.42 107.84 110.86	22.1278 23.0042 23.5767	37.60 37.70 38.24	$0.5299 \\ 0.5303 \\ 0.5333$	105.72 108.16 112.24
9999 10000	20.4752 20.7974	48.00 48.72	$0.5515 \\ 0.5547$	116.18 129.68	23.6343 26.0905	39.16 39.30	$0.5593 \\ 0.5736$	112.24 113.20 114.68

Confidence level

	n	lpha=0.05				lpha=0.01			
δ		K_1	K_2	K_3	K_4	K_1	K_2	K_3	K_4
	3	7.110	19.96	0.3952	49.72	10.330	24.92	0.4351	64.32
	10	9.063	23.16	0.4237	59.20	12.770	27.60	0.4597	73.20
	30	11.154	26.16	0.4463	68.50	14.704	30.88	0.4779	82.38
$2 \cdot 10^{-4}$	100	13.526	29.04	0.4681	78.12	17.098	33.14	0.4960	90.88
	500	15.650	32.46	0.4925	91.00	18.997	36.26	0.5194	103.72
	2000	18.307	36.48	0.5188	102.24	21.505	40.62	0.5426	114.76
	5000	22.445	39.60	0.5347	109.60	26.117	43.86	0.5574	122.62
	3	6.144	18.90	0.3871	47.62	9.315	24.24	0.4286	62.20
	10	6.654	21.72	0.4123	57.20	9.854	26.50	0.4511	71.76
	30	7.414	24.44	0.4344	66.20	11.214	29.14	0.4706	80.18
$2 \cdot 10^{-5}$	100	9.172	28.20	0.4632	76.72	12.579	32.80	0.4926	91.36
	500	12.496	32.10	0.4921	89.52	15.922	36.20	0.5203	102.72
	2000	14.839	35.22	0.5124	99.38	17.814	39.32	0.5390	111.62
	5000	15.930	37.52	0.5252	108.60	19.371	41.56	0.5496	121.82

$$T_p = T_1 (1 + \delta)^{p-1}; \qquad p = 1, 2, \dots, P$$

Confidence level

δ	b	K_1	K_2	K_3	K_4
$2 \cdot 10^{-4}$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 5 \\ 7 \\ 10 \\ 14 \end{array} $	232237 562896 795021 964563 994635 999709 999997	21806 343073 767079 988073 999629 999996 1000000	$\begin{array}{c} 14625 \\ 469900 \\ 932489 \\ 999955 \\ 1000000 \\ 1000000 \\ 1000000 \end{array}$	10208 262592 690109 974477 998325 999980 999999
$2 \cdot 10^{-5}$	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 5 \\ 7 \\ 10 \\ 14 \end{array} $	751558 898623 960112 993910 999147 999958 999999	236968 631071 877169 992634 999685 999997 1000000	$\begin{array}{c} 188712 \\ 694636 \\ 959399 \\ 999962 \\ 1000000 \\ 1000000 \\ 1000000 \end{array}$	$\begin{array}{c} 124993 \\ 492181 \\ 795163 \\ 980925 \\ 998636 \\ 999974 \\ 1000000 \end{array}$

N = 1000000 realization, n = 30 trial periods

Generalization to continuous signal

Rayleigh criterion

$$K_1(T) = \frac{\left(\sum_{i=1}^M x_i \sin \frac{2\pi t_i}{T}\right)^2 + \left(\sum_{i=1}^M x_i \cos \frac{2\pi t_i}{T}\right)^2}{\left(\sum_{i=1}^M x_i\right)^2},$$

Other criteria analyze the light curve and have the same form

What do the criteria really extract?

We do not know what is a periodicity exactly because the standard mathematical definition

$$f(T) = f(T+t)$$

is not good and cannot be applied to real objects.

The criteria reveal not the periodicity itself, but its external manifestations, such as non-smooth light curve.

If the phase is not a linear function of a time we should use the time transformation

so that in new time variable t' the process would be pure periodic.

What do the criteria really extract?

The light curves which are good detected by different periodicity criteria.

Conclusions

- We know statistical properties of at least four criteria of periodicity.
- We can apply these criteria to real objects and correctly define the confidence levels.
- We know the individual properties of the criteria
- We can apply the criteria to both discrete and continuous signal