Does super-large structures exist?

Nabokov N.V., Baryshev Yu.V.

Astronomical Institute, St.-Petersburg University

Contents

- Hubble Ultra Deep Field preview
- Photometric redshifts
- Modeling the radial distribution of galaxies
 - Expected number fluctuations in fixed redshift bins
- Detection of super-large structures
 - HUDF survey radial distributions
 - FDF survey radial distributions
 - Expected number fluctuations
 - Where are the missing gamma ray burst redshifts?
- Tests for detection of the super-large structures
 - Gamma Ray Bursts
 - Covering sky in different directions
 - References

Hubble Ultra Deep Field

Main parameters

Filter	B(F435W)	V(606)W	i(F775W)	z(F850L P)	
Orbit number	56	56	144	144	
Exp. number	112	112	288	288	
Total exp. time	134880	135320	347110	346620	
Null exp. level	25.673	26.486	25.654	24.862	
(AB)					

Our object's catalog parameters:

- Total object count: 4125 (645 elliptical galaxy, 2175 spiral galaxy, other irregular galaxies)
- Photometric redshift probability above 90%
- S/N ratio = 5
- Magnitude limiting: 30.31^m (z filter)

Photometric redshifts

$$\chi^{2}(z) = \sum_{i=1}^{N} \left[\frac{F_{obs,i} - b \times F_{temp,i}(z)}{\sigma^{2}} \right]$$

flux deviations $F_{temp,i}(z)$ – template flux

i – one of the filter (b, v,

 $F_{obs,i}$ - observed

SED and observed galaxy flux in different filters

i, z) For computing photometric redshift we use HyperZ program, where we consider corrections: Calzetti reddening and "Lyman forest".

Modeling the radial distribution of galaxies

 δz =0.03(1 + $\rightarrow \delta z$ (1)=0.0

z) finear sizes and redshift

Δz	0.1	0.2	0.3	0.4	0.5
Δr (Mpc)	237	474	711	1189	3214

magnitude limited galaxy distribution samples:

$$dN_{ml}(z) = Az^{\alpha} \exp\left(-\frac{z}{z_0}\right)^{\beta} dz$$

metric distance (LCDM) : $r(z) = \frac{c}{H_0} \int_{\frac{1}{2}}^{1} \frac{dy}{y\sqrt{(\Omega_m^0 y^{-1} + \Omega_V^0 y^2)}}$

> we use parameters: $H_0=72$ km/c Mpc⁻¹, $\Omega_m=0.3$, $\Omega_V=0.7$

a, β , z_0 – free parameters, A – normalization amplitude

Steps of analysis

- construction the observed redshift distribution $\Delta Nobs(z)/\Delta z$ for several redshift bins Δz
- construction the redshift distribution $\Delta Nml(z)/\Delta z$ for magnitude limited homogeneous distribution of galaxies in considered deep field
- estimation the expected number fluctuations ΔN in fixed redshift bins Δz
- extraction inhomogeneity regions in the radial distribution of galaxies
- comparison of radial redshift distribution $dN(a,\delta)(z)/dz$ for different directions (a,δ) on the sky

Expected number fluctuations in fixed redshift bins

The Poisson's noise dispersion: $\sigma_p^2 = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle^2} = \frac{1}{\langle N \rangle}$

Theoretical dispersion:

$$\sigma_{theor}^2 = \frac{J_2}{1+z} \left(\frac{r_0}{r}\right)^{\gamma}$$

Expected value of «cosmic variance»: $\sigma_{\xi}^{2} = \frac{1}{V^{2}} \int_{V} dV_{1} \int_{V} dV_{2} \xi(|\vec{r_{1}} - \vec{r_{2}}|)$

Effective radius: $r = r_{eff} = \left(\frac{3}{4\pi}r^2\Delta r\Omega\right)^3$

$$\sigma_{obs}(z,\Delta z) = \frac{N_{obs}(z,\Delta) - \langle N \rangle}{\langle N \rangle}$$

HUDF survey radial distributions

Radial distributions for bin $\Delta z=0.3$ (left) and $\Delta z=0.5$ (right)

FDF survey radial distributions

Radial distribution for bin $\Delta z=0.3$

Observed deviations for bin $\Delta z=0.3$

Expected number fluctuations

HUDF									
	$\Delta z = 0.2$			$\Delta z = 0.3$			$\Delta z = 0.5$		
Z	$\mathcal{V}_{e\!f\!f}$	$\sigma_{\scriptscriptstyle P}$	$\sigma_{{}_{theor}}$	Г _{еff}	$\sigma_{\scriptscriptstyle P}$	$\sigma_{{}_{theor}}$	Г _{eff}	$\sigma_{\scriptscriptstyle P}$	$\sigma_{{}_{theor}}$
1	6.68	0.56	0.004	7.65	0.24	0.003	8.16	0.24	0.002
2	7.72	0.39	0.009	8.91	0.12	0.006	10.47	0.09	0.004
3	7.88	0.34	0.027	9.02	0.09	0.017	10.68	0.066	0.011
4	7.67	0.31	0.078	8.76	0.074	0.05	10.53	0.055	0.031
5	7.40	0.29	0.21	8.49	0.067	0.12	10.08	0.049	0.087
FDF									
	$\Delta z = 0.2$		$\Delta z = 0.3$			$\Delta z = 0.5$			
Z	$\mathcal{V}_{e\!f\!f}$	$\sigma_{\scriptscriptstyle P}$	$\sigma_{\scriptscriptstyle theor}$	Г _{еff}	$\sigma_{\scriptscriptstyle P}$	$\sigma_{\scriptscriptstyle theor}$	r _{eff}	$\sigma_{\scriptscriptstyle P}$	$\sigma_{\scriptscriptstyle theor}$
1	12.81	0.31	0.004	14.7	0.07	0.003	15.71	0.07	0.002
2	15.03	0.22	0.009	17.13	0.04	0.006	20.12	0.03	0.004
3	15.12	0.19	0.027	17.33	0.03	0.017	20.55	0.02	0.011
4	14.73	0.17	0.078	16.86	0.02	0.05	20.09	0.017	0.031
5	14.22	0.16	0.21	16.35	0.02	0.12	19.41	0.015	0.087

Where are the missing gamma ray burst redshifts?

(D. M. Coward et al., 2008)

Gamma Ray Bursts

Radial distribution for $\Delta z=0.5$

Observed deviations for bin $\Delta z=0.5$

Tests for detection of the super-large structures

Covering sky in different directions

SDSS Great Wall λ =500 Mpc (Gott et al. 2005)

SDSS power spectrum λ =1200 Mpc (Padmanabhan et al. 2007)

References - 1

- 1. Appenzeller I., et al., 2004, Messenger, 116, 18
- 2. Beckwith et al. 2006, A.J., 132, 1729
- 3. Blake et al. 2007, MNRAS, 374, 1527 (astro-ph/0605303)
- 4. Brand K., et al., 2003, MNRAS, 344, 283
- 5. Coe D. et al., 2006, Astron. J., (astro-ph/0605262)
- 6. Coward D. et al., 2008, astro-ph/0711.0242
- 7. Gabrielli A., Sylos Labini F., Joyce M., Pietronero L., 2005, Statistical Physics for Cosmic Structures, Springer
- 8. Gott J.R., Juric M., Schlegel D. et al., 2005, Ap.J., 624, 463,
- 9. Hawkins et al. 2003, MNRAS, 346,78
- 10.Heidt J., et al., 2003, A \& A, 398, 49
- 11.Malhotra et al. (2005), astro-ph/0501478
- 12.Massey R., et al., 2007a, Ap.J.Suppl.Ser., 172, 239
- 13.Massey R., et al., 2007b, Nature, 445, 286

References -2

- Miller L., et al., 2004, astro-ph/0403065
- Nabokov N., Baryshev Yu., 2008 , Bulletein SAO RAS (in press).
- Padmanabhan et al. 2007, MNRAS, 378, 852 (astro-ph/0605302)
- Peebles P., 1980, The Large-Scale Structure of the Universe (Princeton University Press)
- Percival W., et al., 2006, astro-ph/0608636
- Rudnick L., Brown S., Williams L., 2007, Ap.J., 671, 40 astroph/0704.0908
- Scoville N., et al., 2006, astro-ph/0612384
- Somerville R.S., et al. 2004, Ap.J., 600, L171
- Sylos Labini et al., 1998, Phys. Rep., 293, 66
- Wolf C., et al., 2004, A \& A, 421, 913 (astro-ph/0403666)
- Zehavi et al. 2005, Ap.J., 630, 1
- Zatloukal M., et al., 2007, astro-ph/0709.041