Определение **угла** джета квазара 3С273 с картинной плоскостью и **излома** в электронном спектре по рентгеновскому, оптическому и радиоизлучению его узлов

^{1,2}Банникова Е.Ю., ^{1,2}Конторович В.М., ²Михайлова М.С.

¹Радиоастрономический институт НАН Украины ²Харьковский национальный университет им. В.Н. Каразина

Наблюдаемое распределение интенсивности вдоль джета в различных спектральных диапазонах

Распределение интенсивности в разных диапазонах существенно отличается:

в Х-диапазоне уменьшается с удалением от квазара, а в R-диапазоне увеличивается.

Marshall et al. 2001

Наблюдаемое излучение узлов джета в рентгеновском диапазоне с использованием данных оптического и радиоизлучения узлов позволяет определить **расположение** джета в пространстве.

Фундаментальным для этого является интерпретация Х-излучения как обратного комптоновского рассеяния для ближних (на излучении квазара) и дальних (на реликтовом фоне) узлов (Банникова, Конторович 2003)

и условия конкуренции этих механизмов на узлах В и С

(Bannikova, Mykhailova 2007) (Михайлова, Банникова, Конторович 2007)

Предлагаемая модель образования рентгеновского излучения в джете 3С273

Распределение интенсивности в оптическом и рентгеновском диапазонах вдоль джета по работе Marshall et al. 2001.

$$W_{ES}^{A}, W_{ES}^{B} > W_{CMB}$$
$$W_{ES}^{C} < W_{CMB}$$

(Банникова, Конторович 2003)

 W_{ES} – плотность энергии излучения квазара
W_{CMB} – плотность энергии реликтового излучения

$$I_{\rm IC} \propto N \cdot W$$

Зная наблюдаемые отношения интенсивности Х-излучения на узлах, проведена оценка светимости квазара 3С273:

$$W_{ES}^{A} = 8W_{CMB} \cdot 1/2$$
$$L = 4\pi c r_{A}^{2} W_{ES}^{A} \approx 10^{46} \left(\Im p \varepsilon c^{-1} \right)$$

Полученная светимость совпадает с наблюдаемой

Определение угла между осью джета и лучом зрения

 $W_{ES}^C < W_{CMB}^R < W_{ES}^B$

 $\frac{\xi^2 c \cdot W_{CMB}}{\Sigma} \cdot (a+b)^2 < \sin^2 \theta < \frac{\xi^2 c \cdot W_{CMB}}{\Sigma} \cdot (a+2b)^2$ $29^{\circ} < \theta < 33^{\circ}$

 $W_{ES} = \frac{\Sigma \cdot \sin^2 \theta}{c\xi^2 (R'')^2} \qquad \begin{array}{c} R'' - \text{ расстояние от квазара до узла в} \\ grловых секундах \\ \xi = 1/206265 \end{array}$

 $\Sigma = 5.3 \cdot 10^{-10} \left($ эрг см $^{-2} c^{-1} \right)$ – интегральная

плотность потока

(Perry et al. 1986)

наблюдателю

 $\frac{b}{a} \approx 0.15$

Угол **О** заключён в узких пределах из-за малого расстояние между узлами по сравнению с расстоянием до квазара

Плотности потока радио и рентген. излучения

D – расстояние до 3С273V – объем узла \mathcal{N} – концентрация749 Мпкэлектронов в узле

Определение напряжённости магнитного поля в дальних узлах джета

Из сравнения плотности потока в R- и X- диапазонах для дальних узлов

$$\frac{F_{IC}}{F_{Syn}} \approx \frac{W_{CMB}}{W_{H}} \left(\frac{\omega_{H}}{\omega_{CMB}}\right)^{1-\alpha} \left(\frac{\omega_{IC}}{\omega_{Syn}}\right)^{-\alpha} \qquad \qquad W_{H} = \frac{H^{2}}{8\pi}$$

следует

$$H \approx \left[8\pi \left(\frac{e}{mc}\right)^{1-\alpha} W_{CMB} \ \omega_{CMB}^{\alpha-1} \ \frac{F_{Syn}}{F_{IC}} \left(\frac{\omega_{IC}}{\omega_{Syn}}\right)^{-\alpha} \right]^{1+\alpha}$$

Отсюда используя данные плотностей потоков для разных частот (Uchiyama et al. 2006, Jester et al. 2004)

и спектральный индекс в радиодиапазоне $\,lphapprox pprox 0.8\,$ (Conway et al. 1993)

получаем значения напряженности магнитного поля в дальних узлах джета

Излом в энергетическом спектре электронов

Отсутствие вклада синхротронных фотонов на IC означает ограничение на энергетический спектр электронов и свидетельствует о наличии излома в спектре

$$W_{R-Syn} < W_{CMB}$$

Модель энергетического спектра электронов с изломом:

синхротронного излучения получим гамма-фактор излома:

$$\Gamma_*^2 = \frac{F_2}{F_1} \omega_1^{-\alpha_1} \omega_2^{\alpha_2} \tilde{\omega}^{\alpha_1 - \alpha_2}$$

 F_1 - синхротронное радиоизлучение

*F*₂– синхротронное оптическое излучение

Определение концентрации релятивистских электронов в узлах джета 3С273

Концентрация электронов находится по измеряемой плотности потока:

$$F_{Syn} = \frac{2}{3} (\gamma - 1) c \sigma_T W_H V \mathcal{N} \Gamma_{\min}^{\gamma - 1} \frac{1}{\tilde{\omega}} \left(\frac{\omega_{Syn}}{\tilde{\omega}} \right)^{\alpha} \frac{1}{D^2}$$

Для оптического синхротронного излучения:

$$\gamma_2 = 4 \quad (\alpha_2 = 1.5)$$

Для синхротронногоизлучения в радиодиапазоне:

$$\gamma_1 = 2 \quad (\alpha_1 = 0.5)$$

$$\mathcal{N} = \mathcal{N}_1 + \mathcal{N}_2$$

Оценка параметров в дальних узлах джета 3С273

Узел	Магнитное поле, <i>Гс</i>	Г-фактор излома	Частота излома, v _* , Гц	$\mathcal{N}_1 \Gamma_{\min,}$ см ⁻³	\mathcal{N}_2 , cm ⁻³
C1	1.5 - 10 ⁻⁶	8 ∙10 ⁵	4 •10 ¹²	1.5•10 ⁻²	2·10 ⁻⁸
C2	1.5 - 10 ⁻⁶	7 ∙10 ⁵	3.1 •10 ¹²	2·10 ⁻²	3•10 ⁻⁸
C 3	2.7 - 10 ⁻⁶	4 ∙10 ⁵	1.8 -10 ¹²	2·10 ⁻²	5•10 ⁻⁸
D/H3	3.2 · 10 ⁻⁶	5-10 ⁵	3.4 •10 ¹²	3•10 ⁻²	3•10 ⁻⁸
H2	1•10 ⁻⁵	3 ∙10 ⁵	3.8 •10 ¹²	0.8•10 ⁻²	1.5•10 ⁻⁹

Выводы

- На дальних от квазара узлах джета рентгеновское излучение возникает за счет обратного Комптон-эффекта на фотонах реликтового излучения.
- Рентгеновское излучение ближайших к ядру узлов А и В возникает за счет обратного комптоновского рассеяния на квантах излучения квазара.
- Используя конкуренцию этих механизмов, впервые определен угол между осью джета и лучом зрения.
- Получены оценки напряженности магнитного поля и концентрации релятивистских электронов в удаленных от квазара узлах
- Показано, что энергетический спектр электронов имеет излом