Пущино-2008

Восстановление радиального профиля дисперсии скоростей на основе наблюдаемого распределения лучевой скорости в дисковых галактиках

> Н.Я. Сотникова, С.А. Родионов НИАИ СПБГУ

1. Устойчивость

возмущения в плоскости диска $\sigma_R > \sigma_R^{cr} = \frac{3.36 \ G \ \Sigma_d}{\kappa}$

изгибные возмущения

$$\frac{\sigma_z}{\sigma_R} > \left(\frac{\sigma_z}{\sigma_R}\right)^{cr}$$

Динамическое состояние звездных дисков

2. Построение динамических моделей конкретных галактик

а) массовая модель

б) профили дисперсии скоростей звезд $\sigma_R(R)\,, \sigma_arphi(R)\,, \sigma_z(R)$

Наблюдения

- 1. Промежуточные углы наклона i: 30° 60°
- 2. z₀ невелико
- 3. Диск прозрачный

$$\sigma_{los}^{2} = \frac{1}{2} \sin^{2} \varphi \cdot \left[\left(\sigma_{R}^{2} + \sigma_{\varphi}^{2} + 2 \sigma_{z}^{2} \cdot \operatorname{ctg}^{2} i \right) - \left(\sigma_{R}^{2} - \sigma_{\varphi}^{2} \right) \cos\left(2 \varphi\right) \right]$$

Наблюдения

Разрезы $\sigma_{maj}^{2} = \sigma_{\varphi}^{2} \cdot \sin^{2} i + \sigma_{z}^{2} \cdot \cos^{2} i$ $\sigma_{min}^{2} = \sigma_{R}^{2} \cdot \sin^{2} i + \sigma_{z}^{2} \cdot \cos^{2} i$

Условие равновесия (уравнение Джинса - JE-2)

$$\sigma_{\varphi}^{2}/\sigma_{R}^{2} = \frac{1}{2} \left(1 + \frac{\partial \ln V}{\partial \ln R} \right), \ \mathcal{C}\partial e \quad V = V_{c} \left(u \pi u \quad \left\langle V \right\rangle_{\varphi} \right)$$

Параметризация решений

1. Данные "зашумленные"

$$\sigma_R(R) \propto e^{-R/a_R}$$

$$\boldsymbol{\sigma}_{z}(R) \propto e^{-R/a_{z}}$$

2. "Стандартные" предположения

(van der Kruit, Freeman, 1986)

$$a_R = a_z = 2h$$
 $z\partial e$ $h: \Sigma_d = \Sigma_0 e^{-R/h}$

а) модель изотермических слоев

$$\rho_d(z) \propto \operatorname{sech}^{2}(z/z_0) \implies \sigma_z^2 = \pi G \Sigma_d z_0$$

б) условие устойчивости относительно изгибных возмущений

$$\sigma_z/\sigma_R \approx \text{const}$$

Модель изотермических слоев (N-body)

Серия работ Gerssen et al. (1997-2004)

Форма эллипсоида скоростей – σ_z/σ_R

 $a_R = a_z = h_{\rm kin}$

	i (degree)	h (kpc) (in K)	h _{kin} (kpc)
NGC 1068	30 ± 9	21 ± 3	72 ± 6
NGC 2460	46 ± 7	15 ± 2	108 ± 55
NGC 2775	40 ± 8	35 ± 7	45 ± 3
NGC 4030	40 ± 12	18 ± 2	140 ± 63
NGC 488	40	40 (in B)	38 ± 4
NGC 2985	36	30 (in I)	<mark>88</mark> ± 13

Равновесные модели звездных дисков. Имитация наблюдательных данных

Родионов, Сотникова (2006), Родионов, Орлов (2008) $a_R = 2h$

Равновесные модели звездных дисков. Имитация наблюдательных данных

Профиль радиальной дисперсии скоростей (JE-2, аппроксимация полиномами)

Профиль радиальной дисперсии скоростей (JE-2, аппроксимация сплайном)

17

удается воспроизвести $\sigma_{1}(R)$ и a_{2}

- для углов 15° < i < 40°, если известно $\sigma_{los}(R)$,
- пран 5. JE-1 xop
- в це для Спасибо за внимание!
- про

Выводы